feat(library/basic_thms): add ForallIntro theorem
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
82dfb553d5
commit
19ad39159e
5 changed files with 24 additions and 19 deletions
|
@ -119,6 +119,7 @@ void init_builtin_notation(frontend & f) {
|
|||
f.mark_implicit_arguments(mk_congr2_fn(), 4);
|
||||
f.mark_implicit_arguments(mk_congr_fn(), 6);
|
||||
f.mark_implicit_arguments(mk_forall_elim_fn(), 2);
|
||||
f.mark_implicit_arguments(mk_forall_intro_fn(), 2);
|
||||
f.mark_implicit_arguments(mk_exists_intro_fn(), 2);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -9,6 +9,8 @@ Author: Leonardo de Moura
|
|||
#include "kernel/type_checker.h"
|
||||
#include "library/basic_thms.h"
|
||||
|
||||
#include "kernel/kernel_exception.h"
|
||||
|
||||
namespace lean {
|
||||
|
||||
MK_CONSTANT(trivial, name("Trivial"));
|
||||
|
@ -39,6 +41,7 @@ MK_CONSTANT(congr_fn, name("Congr"));
|
|||
MK_CONSTANT(eqt_elim_fn, name("EqTElim"));
|
||||
MK_CONSTANT(eqt_intro_fn, name("EqTIntro"));
|
||||
MK_CONSTANT(forall_elim_fn, name("ForallElim"));
|
||||
MK_CONSTANT(forall_intro_fn, name("ForallIntro"));
|
||||
MK_CONSTANT(exists_intro_fn, name("ExistsIntro"));
|
||||
|
||||
#if 0
|
||||
|
@ -270,29 +273,18 @@ void import_basic_thms(environment const & env) {
|
|||
Fun({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}},
|
||||
EqTElim(P(a), Congr1(A, Fun({x, A}, Bool), P, Fun({x, A}, True), a, H))));
|
||||
|
||||
// ForallIntro : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
|
||||
env->add_theorem(forall_intro_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P)),
|
||||
Fun({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}},
|
||||
Trans(A_pred, P, Fun({x, A}, P(x)), Fun({x, A}, True),
|
||||
Symm(A_pred, Fun({x, A}, P(x)), P, Eta(A, Fun({x, A}, Bool), P)), // P == fun x : A, P x
|
||||
Abst(A, Fun({x, A}, Bool), Fun({x, A}, P(x)), Fun({x, A}, True), Fun({x, A}, EqTIntro(P(x), H(x)))))));
|
||||
|
||||
// ExistsIntro : Pi (A : Type u) (P : A -> bool) (a : A) (H : P a), exists A P
|
||||
env->add_theorem(exists_intro_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {H, P(a)}}, mk_exists(A, P)),
|
||||
Fun({{A, TypeU}, {P, A_pred}, {a, A}, {H, P(a)}},
|
||||
Discharge(mk_forall(A, Fun({x, A}, Not(P(x)))), False,
|
||||
Fun({H2, mk_forall(A, Fun({x, A}, Not(P(x))))},
|
||||
Absurd(P(a), H, ForallElim(A, Fun({x, A}, Not(P(x))), H2, a))))));
|
||||
|
||||
#if 0
|
||||
// STOPPED HERE
|
||||
|
||||
// foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
|
||||
env->add_axiom(foralli_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P)));
|
||||
|
||||
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
|
||||
env->add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
|
||||
|
||||
|
||||
// domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1
|
||||
expr piA1B1x = Pi({x, A1}, B1(x));
|
||||
expr A1_arrow_u = A1 >> TypeU;
|
||||
env->add_axiom(domain_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {H, Eq(piABx, piA1B1x)}}, Eq(A, A1)));
|
||||
// range_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (a : A) (a1 : A1) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), (B a) = (B1 a1)
|
||||
env->add_axiom(range_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {a, A}, {a1, A1}, {H, Eq(piABx, piA1B1x)}}, Eq(B(a), B1(a1))));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
|
|
@ -119,9 +119,13 @@ expr mk_congr_fn();
|
|||
inline expr Congr(expr const & A, expr const & B, expr const & f, expr const & g, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_congr_fn(), A, B, f, g, a, b, H1, H2}); }
|
||||
|
||||
expr mk_forall_elim_fn();
|
||||
// \brief (Theorem) {A : Type u}, {P : A -> Bool}, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a
|
||||
// \brief (Theorem) {A : Type u}, {P : A -> Bool}, H : (Forall A P), a : A |- ForallElim(A, P, H, a) : P a
|
||||
inline expr ForallElim(expr const & A, expr const & P, expr const & H, expr const & a) { return mk_app(mk_forall_elim_fn(), A, P, H, a); }
|
||||
|
||||
expr mk_forall_intro_fn();
|
||||
// \brief (Theorem) {A : Type u} {P : A -> bool} (H : Pi (x : A), P x) |- ForallIntro(A, P, H) : forall x : A, P
|
||||
inline expr ForallIntro(expr const & A, expr const & P, expr const & H) { return mk_app(mk_forall_intro_fn(), A, P, H); }
|
||||
|
||||
expr mk_exists_intro_fn();
|
||||
// \brief (Theorem) {A : Type u}, {P : A -> Bool}, a : A, H : P a |- ExistsIntro(A, P, a, H) : exists x : A, P
|
||||
inline expr ExistsIntro(expr const & A, expr const & P, expr const & a, expr const & H) { return mk_app(mk_exists_intro_fn(), A, P, a, H); }
|
||||
|
|
3
tests/lean/forall1.lean
Normal file
3
tests/lean/forall1.lean
Normal file
|
@ -0,0 +1,3 @@
|
|||
Variable P : Int -> Bool
|
||||
Axiom Ax (x : Int) : P x
|
||||
Check ForallIntro Ax
|
5
tests/lean/forall1.lean.expected.out
Normal file
5
tests/lean/forall1.lean.expected.out
Normal file
|
@ -0,0 +1,5 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Assumed: P
|
||||
Assumed: Ax
|
||||
ForallIntro Ax : ∀ x : ℤ, P x
|
Loading…
Reference in a new issue