feat(library/hott) completed the funext_from_ua proof with a somewhat restricted generality on universe levels

This commit is contained in:
Jakob von Raumer 2014-11-19 17:15:20 -05:00 committed by Leonardo de Moura
parent bc33af9f51
commit 19d0afe160

View file

@ -67,91 +67,83 @@ context
protected definition diagonal [reducible] (B : Type) : Type protected definition diagonal [reducible] (B : Type) : Type
:= Σ xy : B × B, pr₁ xy ≈ pr₂ xy := Σ xy : B × B, pr₁ xy ≈ pr₂ xy
protected definition isequiv_src_compose {A B C : Type} protected definition isequiv_src_compose {A B : Type}
: @IsEquiv (A → diagonal B) : @IsEquiv (A → diagonal B)
(A → B) (A → B)
(compose (pr₁ ∘ dpr1)) (compose (pr₁ ∘ dpr1)) :=
:= @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1) @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1)
(IsEquiv.adjointify (pr₁ ∘ dpr1) (IsEquiv.adjointify (pr₁ ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp) (λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x (λ x, sigma.rec_on x
(λ xy, prod.rec_on xy (λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp)))) (λ b c p, path.rec_on p idp))))
protected definition isequiv_tgt_compose {A B C : Type} protected definition isequiv_tgt_compose {A B : Type}
: @IsEquiv (A → diagonal B) : @IsEquiv (A → diagonal B)
(A → B) (A → B)
(compose (pr₂ ∘ dpr1)) (compose (pr₂ ∘ dpr1)) :=
:= @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1) @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1)
(IsEquiv.adjointify (pr2 ∘ dpr1) (IsEquiv.adjointify (pr2 ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp) (λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x (λ x, sigma.rec_on x
(λ xy, prod.rec_on xy (λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp)))) (λ b c p, path.rec_on p idp))))
theorem ua_implies_funext_nondep {A B : Type.{l+1}} theorem ua_implies_funext_nondep {A : Type} {B : Type.{l+1}}
: Π {f g : A → B}, f g → f ≈ g : Π {f g : A → B}, f g → f ≈ g :=
:= (λ (f g : A → B) (p : f g), (λ (f g : A → B) (p : f g),
let d := λ (x : A), dpair (f x , f x) idp in let d := λ (x : A), dpair (f x , f x) idp in
let e := λ (x : A), dpair (f x , g x) (p x) in let e := λ (x : A), dpair (f x , g x) (p x) in
let precomp1 := compose (pr₁ ∘ dpr1) in let precomp1 := compose (pr₁ ∘ dpr1) in
have equiv1 [visible] : IsEquiv precomp1, have equiv1 [visible] : IsEquiv precomp1,
from @isequiv_src_compose A B (diagonal B), from @isequiv_src_compose A B,
have equiv2 [visible] : Π x y, IsEquiv (ap precomp1), have equiv2 [visible] : Π x y, IsEquiv (ap precomp1),
from IsEquiv.ap_closed precomp1, from IsEquiv.ap_closed precomp1,
have H' : Π (x y : A → diagonal B), have H' : Π (x y : A → diagonal B),
pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y, pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y,
from (λ x y, IsEquiv.inv (ap precomp1)), from (λ x y, IsEquiv.inv (ap precomp1)),
have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e, have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e,
from idp, from idp,
have eq0 : d ≈ e, have eq0 : d ≈ e,
from H' d e eq2, from H' d e eq2,
have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e, have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e,
from ap _ eq0, from ap _ eq0,
eq1 eq1
) )
end end
context context
universe variables l k universe variables l
parameters {ua1 : ua_type.{l+1}} {ua2 : ua_type.{l+2}} parameters {ua2 : ua_type.{l+2}} {ua3 : ua_type.{l+3}}
--parameters {ua1 ua2 : ua_type}
-- Now we use this to prove weak funext, which as we know -- Now we use this to prove weak funext, which as we know
-- implies (with dependent eta) also the strong dependent funext. -- implies (with dependent eta) also the strong dependent funext.
set_option pp.universes true theorem ua_implies_weak_funext : weak_funext.{l} :=
check @ua_implies_funext_nondep (λ (A : Type.{l+1}) (P : A → Type.{l+2}) allcontr,
check @weak_funext_implies_funext let U := (λ (x : A), unit) in
check @ua_type have pequiv : Π (x : A), P x ≃ U x,
definition lift : Type.{l+1} → Type.{l+2} := sorry from (λ x, @equiv_contr_unit(P x) (allcontr x)),
have psim : Π (x : A), P x ≈ U x,
theorem ua_implies_weak_funext : weak_funext from (λ x, @IsEquiv.inv _ _
:= (λ (A : Type.{l+1}) (P : A → Type.{l+1}) allcontr, (@equiv_path (P x) (U x)) (ua2 (P x) (U x)) (pequiv x)),
have liftA : Type.{l+2}, have p : P ≈ U,
from lift A, from @ua_implies_funext_nondep.{l+2 l+1} ua3 A Type.{l+2} P U psim,
let U := (λ (x : A), unit) in have tU' : is_contr (A → unit),
have pequiv : Πx, P x ≃ U x, from is_contr.mk (λ x, ⋆)
from (λ x, @equiv_contr_unit(P x) (allcontr x)), (λ f, @ua_implies_funext_nondep ua2 A unit (λ x, ⋆) f
have psim : Πx, P x ≈ U x, (λ x, unit.rec_on (f x) idp)),
from (λ x, @IsEquiv.inv _ _ have tU : is_contr (Π x, U x),
(@equiv_path (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)), from tU',
have p : P ≈ U, have tlast : is_contr (Πx, P x),
from @ua_implies_funext_nondep.{l} ua1 A Type.{l+1} P U psim, from path.transport _ (p⁻¹) tU,
have tU' : is_contr (A → unit), tlast
from is_contr.mk (λ x, ⋆) )
(λ f, @ua_implies_funext_nondep ua1 _ _ _ _
(λ x, unit.rec_on (f x) idp)),
have tU : is_contr (Πx, U x),
from tU',
have tlast : is_contr (Πx, P x),
from path.transport _ (p⁻¹) tU,
tlast
)
end end
exit
-- In the following we will proof function extensionality using the univalence axiom -- In the following we will proof function extensionality using the univalence axiom
-- TODO: check out why I have to generalize on A and P here -- TODO: check out why I have to generalize on A and P here
definition ua_implies_funext_type {ua : ua_type.{1}} : @funext_type := definition ua_implies_funext_type {ua : ua_type} : @funext_type :=
(λ A P, weak_funext_implies_funext (@ua_implies_weak_funext ua)) (λ A P, weak_funext_implies_funext (@ua_implies_visible]weak_funext ua))