feat(kernel/default_converter): take into account the 'theorem' annotations in the converability checker

The idea is that we should seldon need to unfold theorems.
The convertability checker should use that.
When the convertability checker was implemented, theorems were opaque in
Lean. So, this hint was not needed.

This modification is another workaround for the performance problem with
the migrate command at library/data/real/division.lean.
This solution is better than applying proof irrelevance eagerly because
it also addresses similar problems in the HoTT library which does not
support proof irrelevance.

This commit also enables the conv_opt for all theorems.
This commit is contained in:
Leonardo de Moura 2015-06-30 10:42:26 -07:00
parent acc0832928
commit 1e6550eda6
2 changed files with 11 additions and 28 deletions

View file

@ -85,10 +85,10 @@ declaration mk_definition(environment const & env, name const & n, level_param_n
} }
declaration mk_theorem(environment const & env, name const & n, level_param_names const & params, expr const & t, expr const & v) { declaration mk_theorem(environment const & env, name const & n, level_param_names const & params, expr const & t, expr const & v) {
unsigned w = get_max_weight(env, v); unsigned w = get_max_weight(env, v);
return declaration(new declaration::cell(n, params, t, true, v, w+1, false)); return declaration(new declaration::cell(n, params, t, true, v, w+1, true));
} }
declaration mk_theorem(name const & n, level_param_names const & params, expr const & t, expr const & v, unsigned weight) { declaration mk_theorem(name const & n, level_param_names const & params, expr const & t, expr const & v, unsigned weight) {
return declaration(new declaration::cell(n, params, t, true, v, weight, false)); return declaration(new declaration::cell(n, params, t, true, v, weight, true));
} }
declaration mk_axiom(name const & n, level_param_names const & params, expr const & t) { declaration mk_axiom(name const & n, level_param_names const & params, expr const & t) {
return declaration(new declaration::cell(n, params, t, true)); return declaration(new declaration::cell(n, params, t, true));

View file

@ -488,12 +488,15 @@ auto default_converter::lazy_delta_reduction_step(expr & t_n, expr & s_n, constr
t_n = whnf_core(unfold_names(t_n, 0)); t_n = whnf_core(unfold_names(t_n, 0));
} else if (!d_t && d_s) { } else if (!d_t && d_s) {
s_n = whnf_core(unfold_names(s_n, 0)); s_n = whnf_core(unfold_names(s_n, 0));
} else if (d_t->get_weight() > d_s->get_weight()) { } else if (!d_t->is_theorem() && d_s->is_theorem()) {
t_n = whnf_core(unfold_names(t_n, d_t->get_weight()));
} else if (!d_s->is_theorem() && d_t->is_theorem()) {
s_n = whnf_core(unfold_names(s_n, d_s->get_weight()));
} else if (!d_t->is_theorem() && d_t->get_weight() > d_s->get_weight()) {
t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1)); t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1));
} else if (d_t->get_weight() < d_s->get_weight()) { } else if (!d_s->is_theorem() && d_t->get_weight() < d_s->get_weight()) {
s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1)); s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1));
} else { } else {
lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight());
if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) { if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) {
// If t_n and s_n are both applications of the same (non-opaque) definition, // If t_n and s_n are both applications of the same (non-opaque) definition,
if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) { if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) {
@ -587,21 +590,6 @@ bool default_converter::postpone_is_def_eq(expr const & t, expr const & s) {
return false; return false;
} }
/** \brief Return true if we should try proof irrelevance eagerly.
\remark: We do it whenever t and s do not contain metavariables and one of them is a theorem application.
*/
static bool try_eager_proof_irrel(environment const & env, expr const & t, expr const & s) {
if (!env.prop_proof_irrel())
return false;
if (has_expr_metavar(t) || has_expr_metavar(s))
return false;
expr const & f_t = get_app_fn(t);
if (is_constant(f_t) && env.get(const_name(f_t)).is_theorem())
return true;
expr const & f_s = get_app_fn(s);
return is_constant(f_s) && env.get(const_name(f_s)).is_theorem();
}
pair<bool, constraint_seq> default_converter::is_def_eq_core(expr const & t, expr const & s) { pair<bool, constraint_seq> default_converter::is_def_eq_core(expr const & t, expr const & s) {
check_system("is_definitionally_equal"); check_system("is_definitionally_equal");
constraint_seq cs; constraint_seq cs;
@ -613,11 +601,6 @@ pair<bool, constraint_seq> default_converter::is_def_eq_core(expr const & t, exp
expr t_n = whnf_core(t); expr t_n = whnf_core(t);
expr s_n = whnf_core(s); expr s_n = whnf_core(s);
constraint_seq pi_cs_1;
bool eager_proof_irrel = try_eager_proof_irrel(m_env, t, s);
if (eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_1))
return to_bcs(true, pi_cs_1);
if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) { if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) {
r = quick_is_def_eq(t_n, s_n, cs); r = quick_is_def_eq(t_n, s_n, cs);
if (r != l_undef) return to_bcs(r == l_true, cs); if (r != l_undef) return to_bcs(r == l_true, cs);
@ -642,9 +625,9 @@ pair<bool, constraint_seq> default_converter::is_def_eq_core(expr const & t, exp
if (try_eta_expansion(t_n, s_n, cs)) if (try_eta_expansion(t_n, s_n, cs))
return to_bcs(true, cs); return to_bcs(true, cs);
constraint_seq pi_cs_2; constraint_seq pi_cs;
if (!eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_2)) if (is_def_eq_proof_irrel(t, s, pi_cs))
return to_bcs(true, pi_cs_2); return to_bcs(true, pi_cs);
if (is_stuck(t_n) || is_stuck(s_n) || postpone) { if (is_stuck(t_n) || is_stuck(s_n) || postpone) {
cs += constraint_seq(mk_eq_cnstr(t_n, s_n, m_jst->get())); cs += constraint_seq(mk_eq_cnstr(t_n, s_n, m_jst->get()));