feat(library/data/set/basic): add a few theorems

This commit is contained in:
Jeremy Avigad 2015-08-09 21:18:25 -04:00
parent 276771e6ca
commit 209d7b07aa
3 changed files with 60 additions and 25 deletions

View file

@ -18,19 +18,22 @@ definition mem [reducible] (x : X) (a : set X) := a x
infix `∈` := mem infix `∈` := mem
notation a ∉ b := ¬ mem a b notation a ∉ b := ¬ mem a b
theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x)) funext (take x, propext (H x))
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
infix `⊆` := subset infix `⊆` := subset
definition superset [reducible] (s t : set X) : Prop := t ⊆ s
infix `⊇` := superset
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
theorem subset.trans (a b c : set X) (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax) take x, assume ax, subbc (subab ax)
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂ assume h₁ h₂, h₁ _ h₂
@ -55,6 +58,10 @@ abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a
notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) :
∃₀ x ∈ s, P x :=
exists.intro x (and.intro xs Px)
/- empty set -/ /- empty set -/
definition empty [reducible] : set X := λx, false definition empty [reducible] : set X := λx, false
@ -66,7 +73,7 @@ assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
setext (take x, iff.intro ext (take x, iff.intro
(assume xs, absurd xs (H x)) (assume xs, absurd xs (H x))
(assume xe, absurd xe !not_mem_empty)) (assume xe, absurd xe !not_mem_empty))
@ -91,6 +98,14 @@ theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
assume H : empty = univ, assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _))
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
eq_of_subset_of_subset (subset_univ s) H
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
/- union -/ /- union -/
definition union [reducible] (a b : set X) : set X := λx, x ∈ a x ∈ b definition union [reducible] (a b : set X) : set X := λx, x ∈ a x ∈ b
@ -107,19 +122,19 @@ theorem mem_union_of_mem_right {x : X} {b : set X} (a : set X) : x ∈ b → x
assume h, or.inr h assume h, or.inr h
theorem union_self (a : set X) : a a = a := theorem union_self (a : set X) : a a = a :=
setext (take x, !or_self) ext (take x, !or_self)
theorem union_empty (a : set X) : a ∅ = a := theorem union_empty (a : set X) : a ∅ = a :=
setext (take x, !or_false) ext (take x, !or_false)
theorem empty_union (a : set X) : ∅ a = a := theorem empty_union (a : set X) : ∅ a = a :=
setext (take x, !false_or) ext (take x, !false_or)
theorem union.comm (a b : set X) : a b = b a := theorem union.comm (a b : set X) : a b = b a :=
setext (take x, or.comm) ext (take x, or.comm)
theorem union.assoc (a b c : set X) : (a b) c = a (b c) := theorem union.assoc (a b c : set X) : (a b) c = a (b c) :=
setext (take x, or.assoc) ext (take x, or.assoc)
theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ (s₂ s₃) = s₂ (s₁ s₃) := theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union.comm union.assoc s₁ s₂ s₃ !left_comm union.comm union.assoc s₁ s₂ s₃
@ -127,6 +142,13 @@ theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ (s₂ s₃) = s
theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ s₂) s₃ = (s₁ s₃) s₂ := theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
!right_comm union.comm union.assoc s₁ s₂ s₃ !right_comm union.comm union.assoc s₁ s₂ s₃
theorem subset_union_left (s t : set X) : s ⊆ s t := λ x H, or.inl H
theorem subset_union_right (s t : set X) : t ⊆ s t := λ x H, or.inr H
theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s t ⊆ r :=
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
/- intersection -/ /- intersection -/
definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
@ -137,19 +159,19 @@ theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem inter_self (a : set X) : a ∩ a = a := theorem inter_self (a : set X) : a ∩ a = a :=
setext (take x, !and_self) ext (take x, !and_self)
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
setext (take x, !and_false) ext (take x, !and_false)
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
setext (take x, !false_and) ext (take x, !false_and)
theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := theorem inter.comm (a b : set X) : a ∩ b = b ∩ a :=
setext (take x, !and.comm) ext (take x, !and.comm)
theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
setext (take x, !and.assoc) ext (take x, !and.assoc)
theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter.comm inter.assoc s₁ s₂ s₃ !left_comm inter.comm inter.assoc s₁ s₂ s₃
@ -158,24 +180,31 @@ theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (
!right_comm inter.comm inter.assoc s₁ s₂ s₃ !right_comm inter.comm inter.assoc s₁ s₂ s₃
theorem inter_univ (a : set X) : a ∩ univ = a := theorem inter_univ (a : set X) : a ∩ univ = a :=
setext (take x, !and_true) ext (take x, !and_true)
theorem univ_inter (a : set X) : univ ∩ a = a := theorem univ_inter (a : set X) : univ ∩ a = a :=
setext (take x, !true_and) ext (take x, !true_and)
theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H
theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H
theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
λ x xr, and.intro (rs xr) (rt xr)
/- distributivity laws -/ /- distributivity laws -/
theorem inter.distrib_left (s t u : set X) : s ∩ (t u) = (s ∩ t) (s ∩ u) := theorem inter.distrib_left (s t u : set X) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
setext (take x, !and.left_distrib) ext (take x, !and.left_distrib)
theorem inter.distrib_right (s t u : set X) : (s t) ∩ u = (s ∩ u) (t ∩ u) := theorem inter.distrib_right (s t u : set X) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
setext (take x, !and.right_distrib) ext (take x, !and.right_distrib)
theorem union.distrib_left (s t u : set X) : s (t ∩ u) = (s t) ∩ (s u) := theorem union.distrib_left (s t u : set X) : s (t ∩ u) = (s t) ∩ (s u) :=
setext (take x, !or.left_distrib) ext (take x, !or.left_distrib)
theorem union.distrib_right (s t u : set X) : (s ∩ t) u = (s u) ∩ (t u) := theorem union.distrib_right (s t u : set X) : (s ∩ t) u = (s u) ∩ (t u) :=
setext (take x, !or.right_distrib) ext (take x, !or.right_distrib)
/- set-builder notation -/ /- set-builder notation -/
@ -214,21 +243,26 @@ propext (iff.intro !eq_or_mem_of_mem_insert
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s :=
setext (λ x, eq.substr (mem_insert_eq x a s) ext (λ x, eq.substr (mem_insert_eq x a s)
(or_iff_right_of_imp (λH1, eq.substr H1 H))) (or_iff_right_of_imp (λH1, eq.substr H1 H)))
theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) :=
setext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y := theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y :=
assume h, or.elim (eq_or_mem_of_mem_insert h) assume h, or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this) (suppose x = y, this)
(suppose x ∈ ∅, absurd this !not_mem_empty) (suppose x ∈ ∅, absurd this !not_mem_empty)
theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b :=
iff.intro
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
(assume aeqb, or.inl aeqb)
/- separation -/ /- separation -/
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
setext (take x, iff.intro ext (take x, iff.intro
(suppose x ∈ s, and.intro (ssubt this) this) (suppose x ∈ s, and.intro (ssubt this) this)
(suppose x ∈ {x ∈ t | x ∈ s}, and.right this)) (suppose x ∈ {x ∈ t | x ∈ s}, and.right this))
@ -253,7 +287,7 @@ theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s (t \ s) = t := theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s (t \ s) = t :=
setext (take x, iff.intro ext (take x, iff.intro
(assume H1 : x ∈ s (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2)) (assume H1 : x ∈ s (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2))
(assume H1 : x ∈ t, (assume H1 : x ∈ t,
decidable.by_cases decidable.by_cases

View file

@ -88,6 +88,7 @@ reserve infix `∉`:50
reserve infixl `∩`:70 reserve infixl `∩`:70
reserve infixl ``:65 reserve infixl ``:65
reserve infix `⊆`:50 reserve infix `⊆`:50
reserve infix `⊇`:50
/- other symbols -/ /- other symbols -/

View file

@ -182,7 +182,7 @@ lemma closed_lcontract_set a (H G : set A) : mul_closed_on G → H ⊆ G → a
assert PaGsubG : a ∘> G ⊆ G, from closed_lcontract a G Pclosed PainG, assert PaGsubG : a ∘> G ⊆ G, from closed_lcontract a G Pclosed PainG,
assert PaHsubaG : a ∘> H ⊆ a ∘> G, from assert PaHsubaG : a ∘> H ⊆ a ∘> G, from
eq.symm (glcoset_eq_lcoset a H) ▸ eq.symm (glcoset_eq_lcoset a G) ▸ (coset.l_sub a H G PHsubG), eq.symm (glcoset_eq_lcoset a H) ▸ eq.symm (glcoset_eq_lcoset a G) ▸ (coset.l_sub a H G PHsubG),
subset.trans _ _ _ PaHsubaG PaGsubG subset.trans PaHsubaG PaGsubG
definition subgroup.has_inv H := ∀ (a : A), a ∈ H → a⁻¹ ∈ H definition subgroup.has_inv H := ∀ (a : A), a ∈ H → a⁻¹ ∈ H
-- two ways to define the same equivalence relatiohship for subgroups -- two ways to define the same equivalence relatiohship for subgroups
definition in_lcoset [reducible] H (a b : A) := a ∈ b ∘> H definition in_lcoset [reducible] H (a b : A) := a ∈ b ∘> H