feat(library/data/nat): define least function for nat

This commit is contained in:
Rob Lewis 2015-07-31 09:09:18 -04:00 committed by Leonardo de Moura
parent 7d6b595289
commit 25aa5b3939

View file

@ -290,8 +290,9 @@ lemma lt_succ_of_lt {i j : nat} : i < j → i < succ j :=
assume Plt, lt.trans Plt (self_lt_succ j) assume Plt, lt.trans Plt (self_lt_succ j)
/- other forms of induction -/ /- other forms of induction -/
protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
nat.rec (λm h, absurd h !not_lt_zero) nat.rec (λm, not.elim !not_lt_zero)
(λn' (IH : ∀ {m : }, m < n' → P m) m l, (λn' (IH : ∀ {m : }, m < n' → P m) m l,
or.by_cases (lt_or_eq_of_le (le_of_lt_succ l)) or.by_cases (lt_or_eq_of_le (le_of_lt_succ l))
IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self
@ -519,6 +520,72 @@ section greatest
have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim, have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim,
apply ih ltim}} apply ih ltim}}
end end
definition least :
| 0 := 0
| (succ n) := if P (least n) then least n else succ n
theorem least_of_bound {n : } (H : P n) : P (least P n) :=
begin
induction n with [m, ih],
rewrite ↑least,
apply H,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Hlp, Hlp],
rewrite [if_pos Hlp],
apply Hlp,
rewrite [if_neg Hlp],
apply H
end
theorem bound_le_least (n : ) : n ≥ least P n :=
begin
induction n with [m, ih],
rewrite ↑least, apply le.refl,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
apply le.trans ih !le_succ,
rewrite [if_neg Pnsm],
apply le.refl
end
theorem least_of_lt {i n : } (ltin : i < n) (H : P i) : P (least P n) :=
begin
induction n with [m, ih],
exact absurd ltin !not_lt_zero,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
apply Psm,
rewrite [if_neg Pnsm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
exact absurd (ih Hlt) Pnsm,
rewrite Heq at H,
exact absurd (least_of_bound P H) Pnsm
end
theorem ge_least_of_lt {i n : } (ltin : i < n) (Hi : P i) : i ≥ least P n :=
begin
induction n with [m, ih],
exact absurd ltin !not_lt_zero,
rewrite ↑least,
cases decidable.em (P (least P m)) with [Psm, Pnsm],
rewrite [if_pos Psm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
apply ih Hlt,
rewrite Heq,
apply bound_le_least,
rewrite [if_neg Pnsm],
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
apply absurd (least_of_lt P Hlt Hi) Pnsm,
rewrite Heq at Hi,
apply absurd (least_of_bound P Hi) Pnsm
end
theorem least_lt {n i : } (ltin : i < n) (Hi : P i) : least P n < n :=
lt_of_le_of_lt (ge_least_of_lt P ltin Hi) ltin
end greatest end greatest
end nat end nat