feat(hit/sphere): Prove that maps from S^n to an (n-1)-type are constant

This commit is contained in:
Floris van Doorn 2015-06-04 01:09:26 -04:00
parent 876aa20ad6
commit 33e948d9d1
3 changed files with 53 additions and 10 deletions

View file

@ -89,10 +89,17 @@ namespace sphere
namespace ops
abbreviation S := sphere
notation `S.` := Sphere
notation `S.`:max := Sphere
end ops
open sphere.ops
definition equator (n : ) : map₊ (S. n) (Ω (S. (succ n))) :=
pointed_map.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv
definition surf {n : } : Ω[n] S. n :=
nat.rec_on n (by esimp [Iterated_loop_space]; exact base)
(by intro n s;exact apn (equator n) s)
definition bool_of_sphere [reducible] : S 0 → bool :=
suspension.rec ff tt (λx, empty.elim x)
@ -119,6 +126,16 @@ namespace sphere
{ intro A, transitivity _, apply suspension_adjoint_loop (S. n) A, apply IH}
end
protected definition elim {n : } {P : Pointed} (p : Ω[n] P) : map₊ (S. n) P :=
to_inv !pointed_map_sphere p
definition elim_surf {n : } {P : Pointed} (p : Ω[n] P) : apn (sphere.elim p) surf = p :=
begin
induction n with n IH,
{ esimp [apn,surf,sphere.elim,pointed_map_sphere], apply sorry},
{ apply sorry}
end
end sphere
open sphere sphere.ops
@ -128,7 +145,8 @@ structure weakly_constant [class] {A B : Type} (f : A → B) := --move
namespace trunc
open trunc_index
definition is_trunc_of_pointed_map_sphere_constant (n : ) (A : Type)
variables {n : } {A : Type}
definition is_trunc_of_pointed_map_sphere_constant
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
@ -141,12 +159,25 @@ namespace trunc
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant (n : ) (A : Type)
definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_pointed_map_sphere_constant,
intros, cases f with f p, esimp at *, apply H
end
definition pointed_map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
let H'' := @is_trunc_equiv_closed_rev _ _ _ !pointed_map_sphere H',
assert p : (f = pointed_map.mk (λx, f base) (respect_pt f)),
apply is_hprop.elim,
exact ap10 (ap pointed_map.map p) x
end
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : f x = f base :=
pointed_map_sphere_constant_of_is_trunc (f base) (pointed_map.mk f idp) x
end trunc

View file

@ -66,11 +66,11 @@ namespace pointed
-- | Iterated_loop_space A 0 := A
-- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n
definition Iterated_loop_space (A : Pointed) (n : ) : Pointed :=
definition Iterated_loop_space [reducible] (n : ) (A : Pointed) : Pointed :=
nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A
prefix `Ω`:(max+1) := Loop_space
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space A n
prefix `Ω`:(max+5) := Loop_space
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space n A
definition iterated_loop_space (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
@ -148,7 +148,6 @@ namespace pointed
-- }
-- end
definition pointed_map_bool_equiv (B : Pointed) : map₊ Bool B ≃ B :=
begin
fapply equiv.MK,
@ -166,4 +165,17 @@ namespace pointed
-- ... ≃ (unit → B) : pointed_map_equiv
-- ... ≃ B : unit_imp_equiv
definition apn {A B : Pointed} {n : } (f : map₊ A B) (p : Ω[n] A) : Ω[n] B :=
begin
revert A B f p, induction n with n IH,
{ intros A B f p, exact f p},
{ intros A B f p, rewrite [↑Iterated_loop_space at p,↓Iterated_loop_space n (Ω A) at p,
↑Iterated_loop_space, ↓Iterated_loop_space n (Ω B)],
apply IH (Ω A),
{ esimp, fapply pointed_map.mk,
intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt,
esimp, apply con.left_inv},
{ exact p}}
end
end pointed

View file

@ -171,7 +171,7 @@ namespace is_trunc
{ esimp, apply con_right_inv2}},
transitivity _,
apply iff.pi_iff_pi, intro p,
rewrite [↑Iterated_loop_space,↓Iterated_loop_space (Loop_space (pointed.Mk p)) n,H],
rewrite [↑Iterated_loop_space,↓Iterated_loop_space n (Loop_space (pointed.Mk p)),H],
apply iff.refl,
apply iff.imp_iff, reflexivity}
end