feat(hit/sphere): Prove that maps from S^n to an (n-1)-type are constant
This commit is contained in:
parent
876aa20ad6
commit
33e948d9d1
3 changed files with 53 additions and 10 deletions
|
@ -89,10 +89,17 @@ namespace sphere
|
|||
|
||||
namespace ops
|
||||
abbreviation S := sphere
|
||||
notation `S.` := Sphere
|
||||
notation `S.`:max := Sphere
|
||||
end ops
|
||||
open sphere.ops
|
||||
|
||||
definition equator (n : ℕ) : map₊ (S. n) (Ω (S. (succ n))) :=
|
||||
pointed_map.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv
|
||||
|
||||
definition surf {n : ℕ} : Ω[n] S. n :=
|
||||
nat.rec_on n (by esimp [Iterated_loop_space]; exact base)
|
||||
(by intro n s;exact apn (equator n) s)
|
||||
|
||||
definition bool_of_sphere [reducible] : S 0 → bool :=
|
||||
suspension.rec ff tt (λx, empty.elim x)
|
||||
|
||||
|
@ -119,6 +126,16 @@ namespace sphere
|
|||
{ intro A, transitivity _, apply suspension_adjoint_loop (S. n) A, apply IH}
|
||||
end
|
||||
|
||||
protected definition elim {n : ℕ} {P : Pointed} (p : Ω[n] P) : map₊ (S. n) P :=
|
||||
to_inv !pointed_map_sphere p
|
||||
|
||||
definition elim_surf {n : ℕ} {P : Pointed} (p : Ω[n] P) : apn (sphere.elim p) surf = p :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ esimp [apn,surf,sphere.elim,pointed_map_sphere], apply sorry},
|
||||
{ apply sorry}
|
||||
end
|
||||
|
||||
end sphere
|
||||
|
||||
open sphere sphere.ops
|
||||
|
@ -128,7 +145,8 @@ structure weakly_constant [class] {A B : Type} (f : A → B) := --move
|
|||
|
||||
namespace trunc
|
||||
open trunc_index
|
||||
definition is_trunc_of_pointed_map_sphere_constant (n : ℕ) (A : Type)
|
||||
variables {n : ℕ} {A : Type}
|
||||
definition is_trunc_of_pointed_map_sphere_constant
|
||||
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||||
begin
|
||||
apply iff.elim_right !is_trunc_iff_is_contr_loop,
|
||||
|
@ -141,12 +159,25 @@ namespace trunc
|
|||
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
|
||||
end
|
||||
|
||||
|
||||
definition is_trunc_iff_map_sphere_constant (n : ℕ) (A : Type)
|
||||
definition is_trunc_iff_map_sphere_constant
|
||||
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||||
begin
|
||||
apply is_trunc_of_pointed_map_sphere_constant,
|
||||
intros, cases f with f p, esimp at *, apply H
|
||||
end
|
||||
|
||||
definition pointed_map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||||
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
|
||||
begin
|
||||
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
|
||||
let H'' := @is_trunc_equiv_closed_rev _ _ _ !pointed_map_sphere H',
|
||||
assert p : (f = pointed_map.mk (λx, f base) (respect_pt f)),
|
||||
apply is_hprop.elim,
|
||||
exact ap10 (ap pointed_map.map p) x
|
||||
end
|
||||
|
||||
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||||
(f : S n → A) (x : S n) : f x = f base :=
|
||||
pointed_map_sphere_constant_of_is_trunc (f base) (pointed_map.mk f idp) x
|
||||
|
||||
end trunc
|
||||
|
|
|
@ -66,11 +66,11 @@ namespace pointed
|
|||
-- | Iterated_loop_space A 0 := A
|
||||
-- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n
|
||||
|
||||
definition Iterated_loop_space (A : Pointed) (n : ℕ) : Pointed :=
|
||||
definition Iterated_loop_space [reducible] (n : ℕ) (A : Pointed) : Pointed :=
|
||||
nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A
|
||||
|
||||
prefix `Ω`:(max+1) := Loop_space
|
||||
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space A n
|
||||
prefix `Ω`:(max+5) := Loop_space
|
||||
notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space n A
|
||||
|
||||
definition iterated_loop_space (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||||
Ω[n] (pointed.mk' A)
|
||||
|
@ -148,7 +148,6 @@ namespace pointed
|
|||
-- }
|
||||
-- end
|
||||
|
||||
|
||||
definition pointed_map_bool_equiv (B : Pointed) : map₊ Bool B ≃ B :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
|
@ -166,4 +165,17 @@ namespace pointed
|
|||
-- ... ≃ (unit → B) : pointed_map_equiv
|
||||
-- ... ≃ B : unit_imp_equiv
|
||||
|
||||
definition apn {A B : Pointed} {n : ℕ} (f : map₊ A B) (p : Ω[n] A) : Ω[n] B :=
|
||||
begin
|
||||
revert A B f p, induction n with n IH,
|
||||
{ intros A B f p, exact f p},
|
||||
{ intros A B f p, rewrite [↑Iterated_loop_space at p,↓Iterated_loop_space n (Ω A) at p,
|
||||
↑Iterated_loop_space, ↓Iterated_loop_space n (Ω B)],
|
||||
apply IH (Ω A),
|
||||
{ esimp, fapply pointed_map.mk,
|
||||
intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt,
|
||||
esimp, apply con.left_inv},
|
||||
{ exact p}}
|
||||
end
|
||||
|
||||
end pointed
|
||||
|
|
|
@ -171,7 +171,7 @@ namespace is_trunc
|
|||
{ esimp, apply con_right_inv2}},
|
||||
transitivity _,
|
||||
apply iff.pi_iff_pi, intro p,
|
||||
rewrite [↑Iterated_loop_space,↓Iterated_loop_space (Loop_space (pointed.Mk p)) n,H],
|
||||
rewrite [↑Iterated_loop_space,↓Iterated_loop_space n (Loop_space (pointed.Mk p)),H],
|
||||
apply iff.refl,
|
||||
apply iff.imp_iff, reflexivity}
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue