rename nondep to constant
This commit is contained in:
parent
98fb55e428
commit
3468ab8a9f
3 changed files with 8 additions and 14 deletions
|
@ -165,9 +165,7 @@ namespace fiber
|
||||||
definition fiber_pr1 (B : A → Type) (a : A) : fiber (pr1 : (Σa, B a) → A) a ≃ B a :=
|
definition fiber_pr1 (B : A → Type) (a : A) : fiber (pr1 : (Σa, B a) → A) a ≃ B a :=
|
||||||
calc
|
calc
|
||||||
fiber pr1 a ≃ Σu, u.1 = a : fiber.sigma_char
|
fiber pr1 a ≃ Σu, u.1 = a : fiber.sigma_char
|
||||||
... ≃ Σa' (b : B a'), a' = a : sigma_assoc_equiv
|
... ≃ Σu, B u.1 : sigma_assoc_comm_equiv
|
||||||
... ≃ Σa' (p : a' = a), B a' : sigma_equiv_sigma_right (λa', !comm_equiv_nondep)
|
|
||||||
... ≃ Σu, B u.1 : sigma_assoc_equiv
|
|
||||||
... ≃ B a : sigma_equiv_of_is_contr_left _ _
|
... ≃ B a : sigma_equiv_of_is_contr_left _ _
|
||||||
|
|
||||||
definition sigma_fiber_equiv (f : A → B) : (Σb, fiber f b) ≃ A :=
|
definition sigma_fiber_equiv (f : A → B) : (Σb, fiber f b) ≃ A :=
|
||||||
|
@ -266,12 +264,8 @@ namespace fiber
|
||||||
apply sigma_equiv_sigma_right, intro x,
|
apply sigma_equiv_sigma_right, intro x,
|
||||||
apply sigma_comm_equiv
|
apply sigma_comm_equiv
|
||||||
end
|
end
|
||||||
... ≃ Σ(w : Σx, x = a), Σ(p : P w.1), f w.1 p =[w.2] q
|
|
||||||
: sigma_assoc_equiv
|
|
||||||
... ≃ Σ(p : P (center (Σx, x=a)).1), f (center (Σx, x=a)).1 p =[(center (Σx, x=a)).2] q
|
|
||||||
: sigma_equiv_of_is_contr_left
|
|
||||||
... ≃ Σ(p : P a), f a p =[idpath a] q
|
... ≃ Σ(p : P a), f a p =[idpath a] q
|
||||||
: equiv_of_eq idp
|
: sigma_sigma_eq_left
|
||||||
... ≃ Σ(p : P a), f a p = q
|
... ≃ Σ(p : P a), f a p = q
|
||||||
:
|
:
|
||||||
begin
|
begin
|
||||||
|
|
|
@ -218,13 +218,13 @@ namespace sigma
|
||||||
by induction p; induction bc; reflexivity
|
by induction p; induction bc; reflexivity
|
||||||
|
|
||||||
/- The special case when the second variable doesn't depend on the first is simpler. -/
|
/- The special case when the second variable doesn't depend on the first is simpler. -/
|
||||||
definition sigma_transport_nondep {B : Type} {C : A → B → Type} (p : a = a')
|
definition sigma_transport_constant {B : Type} {C : A → B → Type} (p : a = a')
|
||||||
(bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ :=
|
(bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ :=
|
||||||
by induction p; induction bc; reflexivity
|
by induction p; induction bc; reflexivity
|
||||||
|
|
||||||
/- Or if the second variable contains a first component that doesn't depend on the first. -/
|
/- Or if the second variable contains a first component that doesn't depend on the first. -/
|
||||||
|
|
||||||
definition sigma_transport2_nondep {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a')
|
definition sigma_transport2_constant {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a')
|
||||||
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ :=
|
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ :=
|
||||||
begin
|
begin
|
||||||
induction p, induction bcd with b cd, induction cd, reflexivity
|
induction p, induction bcd with b cd, induction cd, reflexivity
|
||||||
|
@ -250,7 +250,7 @@ namespace sigma
|
||||||
induction s using idp_rec_on, apply idpo
|
induction s using idp_rec_on, apply idpo
|
||||||
end
|
end
|
||||||
|
|
||||||
definition sigma_pathover_nondep {B : Type} {C : A → B → Type} (p : a = a')
|
definition sigma_pathover_constant {B : Type} {C : A → B → Type} (p : a = a')
|
||||||
(u : Σ(b : B), C a b) (v : Σ(b : B), C a' b)
|
(u : Σ(b : B), C a b) (v : Σ(b : B), C a' b)
|
||||||
(r : u.1 = v.1) (s : pathover (λx, C (prod.pr1 x) (prod.pr2 x)) u.2 (prod.prod_eq p r) v.2) : u =[p] v :=
|
(r : u.1 = v.1) (s : pathover (λx, C (prod.pr1 x) (prod.pr2 x)) u.2 (prod.prod_eq p r) v.2) : u =[p] v :=
|
||||||
begin
|
begin
|
||||||
|
@ -462,7 +462,7 @@ namespace sigma
|
||||||
proof (λp, prod.destruct p (λa b, idp)) qed
|
proof (λp, prod.destruct p (λa b, idp)) qed
|
||||||
proof (λs, destruct s (λa b, idp)) qed)
|
proof (λs, destruct s (λa b, idp)) qed)
|
||||||
|
|
||||||
definition comm_equiv_nondep (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
|
definition comm_equiv_constant (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
|
||||||
calc
|
calc
|
||||||
(Σ(a : A), B) ≃ A × B : equiv_prod
|
(Σ(a : A), B) ≃ A × B : equiv_prod
|
||||||
... ≃ B × A : prod_comm_equiv
|
... ≃ B × A : prod_comm_equiv
|
||||||
|
@ -472,7 +472,7 @@ namespace sigma
|
||||||
: (Σ(v : Σa, B a), C v.1) ≃ (Σ(u : Σa, C a), B u.1) :=
|
: (Σ(v : Σa, B a), C v.1) ≃ (Σ(u : Σa, C a), B u.1) :=
|
||||||
calc (Σ(v : Σa, B a), C v.1)
|
calc (Σ(v : Σa, B a), C v.1)
|
||||||
≃ (Σa (b : B a), C a) : sigma_assoc_equiv
|
≃ (Σa (b : B a), C a) : sigma_assoc_equiv
|
||||||
... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !comm_equiv_nondep)
|
... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !comm_equiv_constant)
|
||||||
... ≃ (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv
|
... ≃ (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv
|
||||||
|
|
||||||
/- Interaction with other type constructors -/
|
/- Interaction with other type constructors -/
|
||||||
|
|
|
@ -115,7 +115,7 @@ namespace univ
|
||||||
(λb, !sigma_assoc_equiv)
|
(λb, !sigma_assoc_equiv)
|
||||||
... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right
|
... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right
|
||||||
(λb, sigma_equiv_sigma_right
|
(λb, sigma_equiv_sigma_right
|
||||||
(λX, !comm_equiv_nondep))
|
(λX, !comm_equiv_constant))
|
||||||
... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right
|
... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right
|
||||||
(λb, !sigma_assoc_equiv⁻¹ᵉ)
|
(λb, !sigma_assoc_equiv⁻¹ᵉ)
|
||||||
... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right
|
... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right
|
||||||
|
|
Loading…
Reference in a new issue