feat(hott): some renamings in init.path
This commit is contained in:
parent
3240df6020
commit
3887efa7c1
2 changed files with 12 additions and 11 deletions
|
@ -257,6 +257,7 @@ namespace eq
|
|||
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
|
||||
by induction H; exact ap f p
|
||||
|
||||
-- [apd] is defined in init.pathover using pathover instead of an equality with transport.
|
||||
definition apdt [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y :=
|
||||
by induction p; reflexivity
|
||||
|
||||
|
@ -443,7 +444,7 @@ namespace eq
|
|||
p⁻¹ ▸ p ▸ z = z :=
|
||||
(con_tr p p⁻¹ z)⁻¹ ⬝ ap (λr, transport P r z) (con.right_inv p)
|
||||
|
||||
definition con_tr_lemma {P : A → Type}
|
||||
definition con_con_tr {P : A → Type}
|
||||
{x y z w : A} (p : x = y) (q : y = z) (r : z = w) (u : P x) :
|
||||
ap (λe, e ▸ u) (con.assoc' p q r) ⬝ (con_tr (p ⬝ q) r u) ⬝
|
||||
ap (transport P r) (con_tr p q u)
|
||||
|
@ -633,7 +634,7 @@ namespace eq
|
|||
idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) :=
|
||||
idp
|
||||
|
||||
definition inverse2_concat2 {p p' : x = y} (h : p = p')
|
||||
definition inv2_con2 {p p' : x = y} (h : p = p')
|
||||
: h⁻² ◾ h = con.left_inv p ⬝ (con.left_inv p')⁻¹ :=
|
||||
by induction h; induction p; reflexivity
|
||||
|
||||
|
@ -643,11 +644,11 @@ namespace eq
|
|||
(a ◾ c) ⬝ (b ◾ d) = (a ⬝ b) ◾ (c ⬝ d) :=
|
||||
by induction d; induction c; induction b;induction a; reflexivity
|
||||
|
||||
definition concat2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
|
||||
definition con2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
|
||||
(a : p = p') (b : q = q') : a ◾ b = whisker_right a q ⬝ whisker_left p' b :=
|
||||
by induction b; induction a; reflexivity
|
||||
|
||||
definition concat2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
|
||||
definition con2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
|
||||
(a : p = p') (b : q = q') : a ◾ b = whisker_left p b ⬝ whisker_right a q' :=
|
||||
by induction b; induction a; reflexivity
|
||||
|
||||
|
@ -671,25 +672,25 @@ namespace eq
|
|||
con.assoc' p idp q ⬝ whisker_right (con_idp p) q = whisker_left p (idp_con q) :=
|
||||
by induction q; induction p; reflexivity
|
||||
|
||||
definition eckmann_hilton {x:A} (p q : idp = idp :> x = x) : p ⬝ q = q ⬝ p :=
|
||||
definition eckmann_hilton (p q : idp = idp :> a = a) : p ⬝ q = q ⬝ p :=
|
||||
begin
|
||||
refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _,
|
||||
refine !whisker_right_con_whisker_left ⬝ _,
|
||||
refine !whisker_left_idp2 ◾ !whisker_right_idp
|
||||
end
|
||||
|
||||
definition concat_eq_concat2 {A : Type} {a : A} (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q :=
|
||||
definition con_eq_con2 (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q :=
|
||||
begin
|
||||
refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _,
|
||||
exact !concat2_eq_rl⁻¹
|
||||
exact !con2_eq_rl⁻¹
|
||||
end
|
||||
|
||||
definition inverse_eq_inverse2 {A : Type} {a : A} (p : idp = idp :> a = a) : p⁻¹ = p⁻² :=
|
||||
definition inv_eq_inv2 (p : idp = idp :> a = a) : p⁻¹ = p⁻² :=
|
||||
begin
|
||||
apply eq.cancel_right p,
|
||||
refine !con.left_inv ⬝ _,
|
||||
refine _ ⬝ !concat_eq_concat2⁻¹,
|
||||
exact !inverse2_concat2⁻¹,
|
||||
refine _ ⬝ !con_eq_con2⁻¹,
|
||||
exact !inv2_con2⁻¹,
|
||||
end
|
||||
|
||||
-- The action of functions on 2-dimensional paths
|
||||
|
|
|
@ -428,7 +428,7 @@ namespace pointed
|
|||
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro p, esimp, refine !idp_con ⬝ _, exact !inverse_eq_inverse2⁻¹ },
|
||||
{ intro p, esimp, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ },
|
||||
{ reflexivity}
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in a new issue