feat(library/data/nat/wf): predecessor relation is well-founded
This commit is contained in:
parent
9c93816211
commit
4623a62ec3
1 changed files with 30 additions and 1 deletions
|
@ -4,9 +4,36 @@
|
||||||
import data.nat.order logic.wf
|
import data.nat.order logic.wf
|
||||||
open nat eq.ops
|
open nat eq.ops
|
||||||
|
|
||||||
|
namespace nat
|
||||||
|
|
||||||
|
inductive pred_rel : nat → nat → Prop :=
|
||||||
|
intro : Π (n : nat), pred_rel n (succ n)
|
||||||
|
|
||||||
|
definition not_pred_rel_zero (n : nat) : ¬ pred_rel n zero :=
|
||||||
|
have aux : ∀{m}, pred_rel n m → succ n = m, from
|
||||||
|
λm H, pred_rel.rec_on H (take n, rfl),
|
||||||
|
assume H : pred_rel n zero,
|
||||||
|
absurd (aux H) !succ_ne_zero
|
||||||
|
|
||||||
|
definition pred_rel_succ {a b : nat} (H : pred_rel a (succ b)) : b = a :=
|
||||||
|
have aux : pred (succ b) = a, from
|
||||||
|
pred_rel.rec_on H (λn, rfl),
|
||||||
|
aux
|
||||||
|
|
||||||
|
-- Predecessor relation is well-founded
|
||||||
|
definition pred_rel.wf : well_founded pred_rel :=
|
||||||
|
well_founded.intro
|
||||||
|
(λn, induction_on n
|
||||||
|
(acc.intro zero (λy (H : pred_rel y zero), absurd H (not_pred_rel_zero y)))
|
||||||
|
(λa (iH : acc pred_rel a),
|
||||||
|
acc.intro (succ a) (λy (H : pred_rel y (succ a)),
|
||||||
|
have aux : a = y, from pred_rel_succ H,
|
||||||
|
eq.rec_on aux iH)))
|
||||||
|
|
||||||
|
-- Less-than relation is well-founded
|
||||||
definition lt.wf [instance] : well_founded lt :=
|
definition lt.wf [instance] : well_founded lt :=
|
||||||
well_founded.intro
|
well_founded.intro
|
||||||
(take n, nat.induction_on n
|
(λn, induction_on n
|
||||||
(acc.intro zero (λ (y : nat) (H : y < 0),
|
(acc.intro zero (λ (y : nat) (H : y < 0),
|
||||||
absurd H !not_lt_zero))
|
absurd H !not_lt_zero))
|
||||||
(λ (n : nat) (iH : acc lt n),
|
(λ (n : nat) (iH : acc lt n),
|
||||||
|
@ -15,3 +42,5 @@ well_founded.intro
|
||||||
or.elim H₁
|
or.elim H₁
|
||||||
(assume Hlt : m < n, acc.inv iH Hlt)
|
(assume Hlt : m < n, acc.inv iH Hlt)
|
||||||
(assume Heq : m = n, Heq⁻¹ ▸ iH))))
|
(assume Heq : m = n, Heq⁻¹ ▸ iH))))
|
||||||
|
|
||||||
|
end nat
|
||||||
|
|
Loading…
Reference in a new issue