refactor(category): move some files to subfolders, and create file with basic functors

This commit is contained in:
Floris van Doorn 2015-10-27 19:02:42 -04:00 committed by Leonardo de Moura
parent e14754a337
commit 46dba4ee5e
22 changed files with 359 additions and 306 deletions

View file

@ -11,6 +11,4 @@ Development of Category Theory. The following files are in this folder (sorted s
* [strict](strict.hlean) : Strict categories * [strict](strict.hlean) : Strict categories
* [nat_trans](nat_trans.hlean) : Natural transformations * [nat_trans](nat_trans.hlean) : Natural transformations
* [constructions](constructions/constructions.md) (subfolder) : basic constructions on categories and examples of categories * [constructions](constructions/constructions.md) (subfolder) : basic constructions on categories and examples of categories
* [limits](limits.hlean) : Limits in a category, defined as terminal object in the cone category * [limits](limits/limits.md) (subfolder) : Limits and colimits in precategories
* [colimits](colimits.hlean) : Colimits in a category, defined as the limit of the opposite functor
* [yoneda](yoneda.hlean) : Yoneda Embedding (WIP)

View file

@ -5,7 +5,7 @@ Common categories and constructions on categories. The following files are in th
* [functor](functor.hlean) : Functor category * [functor](functor.hlean) : Functor category
* [opposite](opposite.hlean) : Opposite category * [opposite](opposite.hlean) : Opposite category
* [hset](hset.hlean) : Category of sets. Includes proof that it is complete and cocomplete * [set](set.hlean) : Category of sets
* [sum](sum.hlean) : Sum category * [sum](sum.hlean) : Sum category
* [product](product.hlean) : Product category * [product](product.hlean) : Product category
* [comma](comma.hlean) : Comma category * [comma](comma.hlean) : Comma category
@ -18,6 +18,3 @@ Discrete, indiscrete or finite categories:
* [indiscrete](indiscrete.hlean) * [indiscrete](indiscrete.hlean)
* [terminal](terminal.hlean) * [terminal](terminal.hlean)
* [initial](initial.hlean) * [initial](initial.hlean)
Non-basic topics:
* [functor2](functor2.hlean) : showing that the functor category has (co)limits if the codomain has them.

View file

@ -4,4 +4,4 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn Authors: Floris van Doorn
-/ -/
import .functor .hset .opposite .product .comma import .functor .set .opposite .product .comma .sum .discrete .indiscrete .terminal .initial

View file

@ -123,6 +123,8 @@ namespace category
{ intro c c' f, apply prod_eq: esimp:apply naturality} { intro c c' f, apply prod_eq: esimp:apply naturality}
end end
infixr ` ×n `:70 := prod_nat_trans
definition prod_flip_functor [constructor] (C D : Precategory) : C ×c D ⇒ D ×c C := definition prod_flip_functor [constructor] (C D : Precategory) : C ×c D ⇒ D ×c C :=
functor.mk (λp, (p.2, p.1)) functor.mk (λp, (p.2, p.1))
(λp p' h, (h.2, h.1)) (λp p' h, (h.2, h.1))

View file

@ -0,0 +1,103 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Category of sets
-/
import ..functor.basic ..category types.equiv types.lift
open eq category equiv iso is_equiv is_trunc function sigma
namespace category
definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} :=
precategory.mk (λx y : hset, x → y)
(λx y z g f a, g (f a))
(λx a, a)
(λx y z w h g f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
definition Precategory_hset [reducible] [constructor] : Precategory :=
Precategory.mk hset precategory_hset
abbreviation set [constructor] := Precategory_hset
namespace set
local attribute is_equiv_subtype_eq [instance]
definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B :=
iso.MK (to_fun f)
(to_inv f)
(eq_of_homotopy (left_inv (to_fun f)))
(eq_of_homotopy (right_inv (to_fun f)))
definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B :=
begin
apply equiv.MK (to_hom f) (iso.to_inv f),
exact ap10 (to_right_inverse f),
exact ap10 (to_left_inverse f)
end
definition is_equiv_iso_of_equiv [constructor] (A B : set)
: is_equiv (@iso_of_equiv A B) :=
adjointify _ (λf, equiv_of_iso f)
(λf, proof iso_eq idp qed)
(λf, equiv_eq idp)
local attribute is_equiv_iso_of_equiv [instance]
definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B =
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
eq_of_homotopy (λp, eq.rec_on p idp)
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
equiv.MK (λf, iso_of_equiv f)
(λf, proof equiv.MK (to_hom f)
(iso.to_inv f)
(ap10 (to_right_inverse f))
(ap10 (to_left_inverse f)) qed)
(λf, proof iso_eq idp qed)
(λf, proof equiv_eq idp qed)
definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) :=
ua !equiv_equiv_iso
definition is_univalent_hset (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
@is_equiv_compose _ _ _ _ _
(@is_equiv_compose _ _ _ _ _
(@is_equiv_compose _ _ _ _ _
_
(@is_equiv_subtype_eq_inv _ _ _ _ _))
!univalence)
!is_equiv_iso_of_equiv,
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
begin
rewrite H₂ at H₁,
assumption
end
end set
definition category_hset [instance] [constructor] [reducible] : category hset :=
category.mk precategory_hset set.is_univalent_hset
definition Category_hset [reducible] [constructor] : Category :=
Category.mk hset category_hset
abbreviation cset [constructor] := Category_hset
open functor lift
definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
functor.mk tlift
(λa b, lift_functor)
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
(λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity))
open pi sigma.ops
end category

View file

@ -107,6 +107,6 @@ namespace category
{ intro a b f, induction a: induction b: esimp at *; induction f with f; esimp; { intro a b f, induction a: induction b: esimp at *; induction f with f; esimp;
try contradiction: apply naturality} try contradiction: apply naturality}
end end
infixr ` +n `:65 := sum_nat_trans
end category end category

View file

@ -3,12 +3,12 @@ Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn Authors: Floris van Doorn
TODO: move TODO: merge with adjoint
-/ -/
import .adjoint ..yoneda import .adjoint .examples
open eq functor nat_trans yoneda iso prod is_trunc open eq functor nat_trans iso prod is_trunc
namespace category namespace category

View file

@ -5,173 +5,3 @@ Authors: Floris van Doorn
Definition of currying and uncurrying of functors Definition of currying and uncurrying of functors
-/ -/
import ..constructions.functor ..constructions.product
open category prod nat_trans eq prod.ops iso equiv
namespace functor
variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D)
definition functor_curry_ob [reducible] [constructor] (c : C) : E ^c D :=
functor.mk (λd, F (c,d))
(λd d' g, F (id, g))
(λd, !respect_id)
(λd₁ d₂ d₃ g' g, calc
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_id
... = F ((id,g') ∘ (id, g)) : by esimp
... = F (id,g') ∘ F (id, g) : by rewrite respect_comp)
definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c')
: functor_curry_ob F c ⟹ functor_curry_ob F c' :=
begin
fapply nat_trans.mk,
{intro d, exact F (f, id)},
{intro d d' g, calc
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
... = F (f, g ∘ id) : by rewrite id_left
... = F (f, g) : by rewrite id_right
... = F (f ∘ id, g) : by rewrite id_right
... = F (f ∘ id, id ∘ g) : by rewrite id_left
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ
}
end
local abbreviation Fhom [constructor] := @functor_curry_hom
theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
(Fhom F f) d = to_fun_hom F (f, id) := idp
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
nat_trans_eq (λd, respect_id F _)
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
begin
apply @nat_trans_eq,
intro d, calc
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by rewrite functor_curry_hom_def
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
... = F ((f',id) ∘ (f, id)) : by esimp
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
end
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_hom F)
(functor_curry_id F)
(functor_curry_comp F)
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
to_fun_ob (G p.1) p.2
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p')
: functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' :=
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
local abbreviation Ghom := @functor_uncurry_hom
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
calc
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
... = id : id_id
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
calc
Ghom G (f' ∘ f)
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
... = Ghom G f' ∘ Ghom G f : by esimp
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
functor.mk (functor_uncurry_ob G)
(functor_uncurry_hom G)
(functor_uncurry_id G)
(functor_uncurry_comp G)
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
begin
intro cd cd' fg,
cases cd with c d, cases cd' with c' d', cases fg with f g,
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
apply id_leftright,
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
from calc
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)]
... = F (f, g ∘ id) : by rewrite id_left
... = F (f,g) : by rewrite id_right,
end
definition functor_curry_functor_uncurry_ob (c : C)
: functor_curry (functor_uncurry G) c = G c :=
begin
fapply functor_eq,
{ intro d, reflexivity},
{ intro d d' g, refine !id_leftright ⬝ _, esimp,
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
end
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
intro c c' f,
fapply nat_trans_eq,
intro d,
apply concat,
{apply (ap (λx, x ∘ _)),
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
apply concat,
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
apply concat, apply natural_map_inv_of_eq,
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
apply concat, apply id_leftright,
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
apply id_left
end
definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory)
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.MK functor_curry
functor_uncurry
functor_curry_functor_uncurry
functor_uncurry_functor_curry
variables {F F' G G'}
definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C)
: functor_curry_ob F c ⟹ functor_curry_ob F' c :=
begin
fapply nat_trans.mk: esimp,
{ intro d, exact η (c, d)},
{ intro d d' f, apply naturality}
end
definition nat_trans_curry [constructor] (η : F ⟹ F')
: functor_curry F ⟹ functor_curry F' :=
begin
fapply nat_trans.mk: esimp,
{ exact nat_trans_curry_nat η},
{ intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality}
end
definition nat_trans_uncurry [constructor] (η : G ⟹ G')
: functor_uncurry G ⟹ functor_uncurry G' :=
begin
fapply nat_trans.mk: esimp,
{ intro v, unfold functor_uncurry_ob, exact (η v.1) v.2},
{ intro v w f, unfold functor_uncurry_hom,
rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]}
end
end functor

View file

@ -0,0 +1,208 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Definition of functors involving at least two different constructions of categories
-/
import ..constructions.functor ..constructions.product ..constructions.opposite
..constructions.set
open category nat_trans eq prod prod.ops
namespace functor
section
open iso equiv
variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D)
/- currying a functor -/
definition functor_curry_ob [reducible] [constructor] (c : C) : D ⇒ E :=
F ∘f (constant_functor D c ×f 1)
definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c')
: functor_curry_ob F c ⟹ functor_curry_ob F c' :=
F ∘fn (constant_nat_trans D f ×n 1)
local abbreviation Fhom [constructor] := @functor_curry_hom
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
nat_trans_eq (λd, respect_id F _)
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
begin
apply @nat_trans_eq,
intro d, calc
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by esimp
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
... = F ((f',id) ∘ (f, id)) : by esimp
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
end
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_hom F)
(functor_curry_id F)
(functor_curry_comp F)
/- uncurrying a functor -/
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
to_fun_ob (G p.1) p.2
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p')
: functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' :=
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
local abbreviation Ghom := @functor_uncurry_hom
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
calc
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
... = id : id_id
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
calc
Ghom G (f' ∘ f)
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
... = Ghom G f' ∘ Ghom G f : by esimp
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
functor.mk (functor_uncurry_ob G)
(functor_uncurry_hom G)
(functor_uncurry_id G)
(functor_uncurry_comp G)
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
begin
intro cd cd' fg,
cases cd with c d, cases cd' with c' d', cases fg with f g,
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
apply id_leftright,
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
from calc
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)]
... = F (f, g ∘ id) : by rewrite id_left
... = F (f,g) : by rewrite id_right,
end
definition functor_curry_functor_uncurry_ob (c : C)
: functor_curry (functor_uncurry G) c = G c :=
begin
fapply functor_eq,
{ intro d, reflexivity},
{ intro d d' g, refine !id_leftright ⬝ _, esimp,
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
end
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
intro c c' f,
fapply nat_trans_eq,
intro d,
apply concat,
{apply (ap (λx, x ∘ _)),
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
apply concat,
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
apply concat, apply natural_map_inv_of_eq,
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
apply concat, apply id_leftright,
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
apply id_left
end
/-
This only states that the carriers of (C ^ D) ^ E and C ^ (E × D) are equivalent.
In [exponential laws] we prove that these are in fact isomorphic categories
-/
definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory)
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.MK functor_curry
functor_uncurry
functor_curry_functor_uncurry
functor_uncurry_functor_curry
variables {F F' G G'}
definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C)
: functor_curry_ob F c ⟹ functor_curry_ob F' c :=
begin
fapply nat_trans.mk: esimp,
{ intro d, exact η (c, d)},
{ intro d d' f, apply naturality}
end
definition nat_trans_curry [constructor] (η : F ⟹ F')
: functor_curry F ⟹ functor_curry F' :=
begin
fapply nat_trans.mk: esimp,
{ exact nat_trans_curry_nat η},
{ intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality}
end
definition nat_trans_uncurry [constructor] (η : G ⟹ G')
: functor_uncurry G ⟹ functor_uncurry G' :=
begin
fapply nat_trans.mk: esimp,
{ intro v, unfold functor_uncurry_ob, exact (η v.1) v.2},
{ intro v w f, unfold functor_uncurry_hom,
rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]}
end
end
section
open is_trunc
/- hom-functors -/
definition hom_functor_assoc {C : Precategory} {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
... = _ : by rewrite (assoc f2 f3 f4)
-- the functor hom(-,-)
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
functor.mk
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @hom_functor_assoc) end)
-- the functor hom(-, c)
definition hom_functor_left.{u v} [constructor] (C : Precategory.{u v}) (c : C)
: Cᵒᵖ ⇒ set.{v} :=
hom_functor C ∘f (1 ×f constant_functor Cᵒᵖ c)
-- the functor hom(c, -)
definition hom_functor_right.{u v} [constructor] (C : Precategory.{u v}) (c : C)
: C ⇒ set.{v} :=
hom_functor C ∘f (constant_functor C c ×f 1)
end
end functor

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Jakob von Raumer
Exponential laws Exponential laws
-/ -/
import .equivalence .curry import .equivalence .examples
..constructions.terminal ..constructions.initial ..constructions.product ..constructions.sum ..constructions.terminal ..constructions.initial ..constructions.product ..constructions.sum
..constructions.discrete ..constructions.discrete

View file

@ -1,11 +1,14 @@
algebra.category.functor algebra.category.functor
======================== ========================
Functors, functor attributes, equivalences, isomorphism, adjointness.
* [basic](basic.hlean) : Definition and basic properties of functors * [basic](basic.hlean) : Definition and basic properties of functors
* [curry](curry.hlean) : Define currying and uncurrying of functors * [examples](examples.hlean) : Constructions of functors between categories, involving more than one category in the [constructions](../constructions/constructions.md) folder (functors which only depend on one constructions are in the corresponding file). This includes the currying and uncurrying of functors
* [attributes](attributes.hlean): Attributes of functors (full, faithful, split essentially surjective, ...) * [attributes](attributes.hlean): Attributes of functors (full, faithful, split essentially surjective, ...)
* [adjoint](adjoint.hlean) : Adjoint functors and equivalences * [adjoint](adjoint.hlean) : Adjoint functors and equivalences
* [equivalence](equivalence.hlean) : Equivalences and Isomorphisms * [equivalence](equivalence.hlean) : Equivalences and Isomorphisms
* [exponential_laws](exponential_laws.hlean) * [exponential_laws](exponential_laws.hlean)
* [yoneda](yoneda.hlean) : the Yoneda Embedding
Note: the functor category is defined in [constructions.functor](../constructions/functor.hlean). Note: the functor category is defined in [constructions.functor](../constructions/functor.hlean). Functors preserving limits is in [limits.functor_preserve](../limits/functor_preserve.hlean).

View file

@ -6,30 +6,12 @@ Authors: Floris van Doorn
Yoneda embedding and Yoneda lemma Yoneda embedding and Yoneda lemma
-/ -/
import .functor.curry .constructions.hset .constructions.opposite .functor.attributes import .examples .attributes
open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift
namespace yoneda namespace yoneda
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
... = _ : by rewrite (assoc f2 f3 f4)
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
functor.mk
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @representable_functor_assoc) end)
/- /-
These attributes make sure that the fields of the category "set" reduce to the right things These attributes make sure that the fields of the category "set" reduce to the right things
However, we don't want to have them globally, because that will unfold the composition g ∘ f However, we don't want to have them globally, because that will unfold the composition g ∘ f
@ -45,6 +27,7 @@ namespace yoneda
definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ := definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
functor_curry (!hom_functor ∘f !prod_flip_functor) functor_curry (!hom_functor ∘f !prod_flip_functor)
notation `ɏ` := yoneda_embedding _ notation `ɏ` := yoneda_embedding _
definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset)

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn
colimit_functor ⊣ Δ ⊣ limit_functor colimit_functor ⊣ Δ ⊣ limit_functor
-/ -/
import ..colimits ..functor.adjoint2 import .colimits ..functor.adjoint2
open functor category is_trunc prod yoneda --remove open functor category is_trunc prod
namespace category namespace category

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Colimits in a category Colimits in a category
-/ -/
import .limits .constructions.opposite import .limits ..constructions.opposite
open is_trunc functor nat_trans eq open is_trunc functor nat_trans eq

View file

@ -0,0 +1,7 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import .limits .colimits

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Jakob von Raumer
Functor category has (co)limits if the codomain has them Functor category has (co)limits if the codomain has them
-/ -/
import ..colimits import .colimits
open functor nat_trans eq is_trunc open functor nat_trans eq is_trunc

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Functors preserving limits Functors preserving limits
-/ -/
import ..colimits ..yoneda import .colimits ..functor.yoneda
open functor yoneda is_trunc nat_trans open functor yoneda is_trunc nat_trans

View file

@ -6,8 +6,8 @@ Authors: Floris van Doorn
Limits in a category Limits in a category
-/ -/
import .constructions.cone .constructions.discrete .constructions.product import ..constructions.cone ..constructions.discrete ..constructions.product
.constructions.finite_cats .category .constructions.functor ..constructions.finite_cats ..category ..constructions.functor
open is_trunc functor nat_trans eq open is_trunc functor nat_trans eq

View file

@ -0,0 +1,8 @@
algebra.category.limits
=======================
* [limits](limits.hlean) : Limits in a category, defined as terminal object in the cone category
* [colimits](colimits.hlean) : Colimits in a category, defined as the limit of the opposite functor
* [complete](complete.hlean) : Categories which are (co)complete or constructions which preserve (co)completeness
* [functor_preserve](functor_preserve.hlean) : Functors which preserve limits and colimits
* [adjoint](adjoint.hlean) : the (co)limit functor is adjoint to the diagonal map

View file

@ -3,101 +3,14 @@ Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer Authors: Floris van Doorn, Jakob von Raumer
Category of hsets The category of sets is complete and cocomplete
-/ -/
import ..category types.equiv types.lift ..colimits hit.set_quotient import .colimits ..constructions.set hit.set_quotient
open eq category equiv iso is_equiv is_trunc function sigma set_quotient trunc open eq functor is_trunc sigma pi sigma.ops trunc set_quotient
namespace category namespace category
definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} :=
precategory.mk (λx y : hset, x → y)
(λx y z g f a, g (f a))
(λx a, a)
(λx y z w h g f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
definition Precategory_hset [reducible] [constructor] : Precategory :=
Precategory.mk hset precategory_hset
abbreviation set [constructor] := Precategory_hset
namespace set
local attribute is_equiv_subtype_eq [instance]
definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B :=
iso.MK (to_fun f)
(to_inv f)
(eq_of_homotopy (left_inv (to_fun f)))
(eq_of_homotopy (right_inv (to_fun f)))
definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B :=
begin
apply equiv.MK (to_hom f) (iso.to_inv f),
exact ap10 (to_right_inverse f),
exact ap10 (to_left_inverse f)
end
definition is_equiv_iso_of_equiv [constructor] (A B : set)
: is_equiv (@iso_of_equiv A B) :=
adjointify _ (λf, equiv_of_iso f)
(λf, proof iso_eq idp qed)
(λf, equiv_eq idp)
local attribute is_equiv_iso_of_equiv [instance]
definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B =
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
eq_of_homotopy (λp, eq.rec_on p idp)
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
equiv.MK (λf, iso_of_equiv f)
(λf, proof equiv.MK (to_hom f)
(iso.to_inv f)
(ap10 (to_right_inverse f))
(ap10 (to_left_inverse f)) qed)
(λf, proof iso_eq idp qed)
(λf, proof equiv_eq idp qed)
definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) :=
ua !equiv_equiv_iso
definition is_univalent_hset (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
@is_equiv_compose _ _ _ _ _
(@is_equiv_compose _ _ _ _ _
(@is_equiv_compose _ _ _ _ _
_
(@is_equiv_subtype_eq_inv _ _ _ _ _))
!univalence)
!is_equiv_iso_of_equiv,
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
begin
rewrite H₂ at H₁,
assumption
end
end set
definition category_hset [instance] [constructor] [reducible] : category hset :=
category.mk precategory_hset set.is_univalent_hset
definition Category_hset [reducible] [constructor] : Category :=
Category.mk hset category_hset
abbreviation cset [constructor] := Category_hset
open functor lift
definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
functor.mk tlift
(λa b, lift_functor)
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
(λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity))
open pi sigma.ops
local attribute Category.to.precategory [unfold 1] local attribute Category.to.precategory [unfold 1]
local attribute category.to_precategory [unfold 2] local attribute category.to_precategory [unfold 2]
@ -154,6 +67,7 @@ namespace category
{ exact _} { exact _}
end end
definition is_cocomplete_set_cone.{u v w} [constructor] definition is_cocomplete_set_cone.{u v w} [constructor]
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F := (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F :=
begin begin
@ -189,6 +103,4 @@ namespace category
{ intro v w r, apply is_hprop.elimo}}}, { intro v w r, apply is_hprop.elimo}}},
end end
end category end category

View file

@ -29,7 +29,9 @@ The rows indicate the chapters, the columns the sections.
Theorems and definitions in the library which are not in the book: Theorems and definitions in the library which are not in the book:
* One major difference is that in this library we heavily use pathovers, so we need less theorems about transports, but instead corresponding theorems about pathovers. These are in [init.pathover](init/pathover.hlean). For higher paths there are [squares](cubical/square.hlean), [squareovers](cubical/squareover.hlean), and the rudiments of [cubes](cubical/cube.hlean) and [cubeovers](cubical/cubeover.hlean). * A major difference is that in this library we heavily use pathovers [D. Licata, G. Brunerie. A Cubical Approach to Synthetic Homotopy Theory]. This means that we need less theorems about transports, but instead corresponding theorems about pathovers. These are in [init.pathover](init/pathover.hlean). For higher paths there are [squares](cubical/square.hlean), [squareovers](cubical/squareover.hlean), and the rudiments of [cubes](cubical/cube.hlean) and [cubeovers](cubical/cubeover.hlean).
* The category theory library is more extensive than what is presented in the book. For example, we have [limits](algebra/category/limits/limits.md).
Chapter 1: Type theory Chapter 1: Type theory
--------- ---------
@ -159,7 +161,7 @@ Every file is in the folder [algebra.category](algebra/category/category.md)
- 9.2 (Functors and transformations): [functor.basic](algebra/category/functor/basic.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean) - 9.2 (Functors and transformations): [functor.basic](algebra/category/functor/basic.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean)
- 9.3 (Adjunctions): [functor.adjoint](algebra/category/functor/adjoint.hlean) - 9.3 (Adjunctions): [functor.adjoint](algebra/category/functor/adjoint.hlean)
- 9.4 (Equivalences): [functor.equivalence](algebra/category/functor/equivalence.hlean) and [functor.attributes](algebra/category/functor/attributes.hlean) (partially) - 9.4 (Equivalences): [functor.equivalence](algebra/category/functor/equivalence.hlean) and [functor.attributes](algebra/category/functor/attributes.hlean) (partially)
- 9.5 (The Yoneda lemma): [constructions.opposite](algebra/category/constructions/opposite.hlean), [constructions.product](algebra/category/constructions/product.hlean), [yoneda](algebra/category/yoneda.hlean) (up to Theorem 9.5.9) - 9.5 (The Yoneda lemma): [constructions.opposite](algebra/category/constructions/opposite.hlean), [constructions.product](algebra/category/constructions/product.hlean), [functor.yoneda](algebra/category/functor/yoneda.hlean) (up to Theorem 9.5.9)
- 9.6 (Strict categories): [strict](algebra/category/strict.hlean) (only definition) - 9.6 (Strict categories): [strict](algebra/category/strict.hlean) (only definition)
- 9.7 (†-categories): not formalized - 9.7 (†-categories): not formalized
- 9.8 (The structure identity principle): not formalized - 9.8 (The structure identity principle): not formalized

View file

@ -41,7 +41,7 @@
"⁻¹ᵉ" "⁻¹ᶠ" "⁻¹ᵍ" "⁻¹ʰ" "⁻¹ⁱ" "⁻¹ᵐ" "⁻¹ᵒ" "⁻¹ᵖ" "⁻¹ʳ" "⁻¹ᵛ" "⁻¹ˢ" "⁻²" "⁻²ᵒ" "⁻¹ᵉ" "⁻¹ᶠ" "⁻¹ᵍ" "⁻¹ʰ" "⁻¹ⁱ" "⁻¹ᵐ" "⁻¹ᵒ" "⁻¹ᵖ" "⁻¹ʳ" "⁻¹ᵛ" "⁻¹ˢ" "⁻²" "⁻²ᵒ"
"⬝e" "⬝i" "⬝o" "⬝op" "⬝po" "⬝h" "⬝v" "⬝hp" "⬝vp" "⬝ph" "⬝pv" "⬝r" "" "◾o" "⬝e" "⬝i" "⬝o" "⬝op" "⬝po" "⬝h" "⬝v" "⬝hp" "⬝vp" "⬝ph" "⬝pv" "⬝r" "" "◾o"
"∘n" "∘f" "∘fi" "∘nf" "∘fn" "∘n1f" "∘1nf" "∘f1n" "∘fn1" "∘n" "∘f" "∘fi" "∘nf" "∘fn" "∘n1f" "∘1nf" "∘f1n" "∘fn1"
"^c" "≃c" "≅c" "×c" "×f" "+c" "+f") "^c" "≃c" "≅c" "×c" "×f" "×n" "+c" "+f" "+n")
"lean constants") "lean constants")
(defconst lean-constants-regexp (regexp-opt lean-constants)) (defconst lean-constants-regexp (regexp-opt lean-constants))
(defconst lean-numerals-regexp (defconst lean-numerals-regexp