refactor(category): move some files to subfolders, and create file with basic functors
This commit is contained in:
parent
e14754a337
commit
46dba4ee5e
22 changed files with 359 additions and 306 deletions
|
@ -11,6 +11,4 @@ Development of Category Theory. The following files are in this folder (sorted s
|
||||||
* [strict](strict.hlean) : Strict categories
|
* [strict](strict.hlean) : Strict categories
|
||||||
* [nat_trans](nat_trans.hlean) : Natural transformations
|
* [nat_trans](nat_trans.hlean) : Natural transformations
|
||||||
* [constructions](constructions/constructions.md) (subfolder) : basic constructions on categories and examples of categories
|
* [constructions](constructions/constructions.md) (subfolder) : basic constructions on categories and examples of categories
|
||||||
* [limits](limits.hlean) : Limits in a category, defined as terminal object in the cone category
|
* [limits](limits/limits.md) (subfolder) : Limits and colimits in precategories
|
||||||
* [colimits](colimits.hlean) : Colimits in a category, defined as the limit of the opposite functor
|
|
||||||
* [yoneda](yoneda.hlean) : Yoneda Embedding (WIP)
|
|
||||||
|
|
|
@ -5,7 +5,7 @@ Common categories and constructions on categories. The following files are in th
|
||||||
|
|
||||||
* [functor](functor.hlean) : Functor category
|
* [functor](functor.hlean) : Functor category
|
||||||
* [opposite](opposite.hlean) : Opposite category
|
* [opposite](opposite.hlean) : Opposite category
|
||||||
* [hset](hset.hlean) : Category of sets. Includes proof that it is complete and cocomplete
|
* [set](set.hlean) : Category of sets
|
||||||
* [sum](sum.hlean) : Sum category
|
* [sum](sum.hlean) : Sum category
|
||||||
* [product](product.hlean) : Product category
|
* [product](product.hlean) : Product category
|
||||||
* [comma](comma.hlean) : Comma category
|
* [comma](comma.hlean) : Comma category
|
||||||
|
@ -18,6 +18,3 @@ Discrete, indiscrete or finite categories:
|
||||||
* [indiscrete](indiscrete.hlean)
|
* [indiscrete](indiscrete.hlean)
|
||||||
* [terminal](terminal.hlean)
|
* [terminal](terminal.hlean)
|
||||||
* [initial](initial.hlean)
|
* [initial](initial.hlean)
|
||||||
|
|
||||||
Non-basic topics:
|
|
||||||
* [functor2](functor2.hlean) : showing that the functor category has (co)limits if the codomain has them.
|
|
||||||
|
|
|
@ -4,4 +4,4 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Floris van Doorn
|
Authors: Floris van Doorn
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .functor .hset .opposite .product .comma
|
import .functor .set .opposite .product .comma .sum .discrete .indiscrete .terminal .initial
|
||||||
|
|
|
@ -123,6 +123,8 @@ namespace category
|
||||||
{ intro c c' f, apply prod_eq: esimp:apply naturality}
|
{ intro c c' f, apply prod_eq: esimp:apply naturality}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
infixr ` ×n `:70 := prod_nat_trans
|
||||||
|
|
||||||
definition prod_flip_functor [constructor] (C D : Precategory) : C ×c D ⇒ D ×c C :=
|
definition prod_flip_functor [constructor] (C D : Precategory) : C ×c D ⇒ D ×c C :=
|
||||||
functor.mk (λp, (p.2, p.1))
|
functor.mk (λp, (p.2, p.1))
|
||||||
(λp p' h, (h.2, h.1))
|
(λp p' h, (h.2, h.1))
|
||||||
|
|
103
hott/algebra/category/constructions/set.hlean
Normal file
103
hott/algebra/category/constructions/set.hlean
Normal file
|
@ -0,0 +1,103 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Floris van Doorn, Jakob von Raumer
|
||||||
|
|
||||||
|
Category of sets
|
||||||
|
-/
|
||||||
|
|
||||||
|
import ..functor.basic ..category types.equiv types.lift
|
||||||
|
|
||||||
|
open eq category equiv iso is_equiv is_trunc function sigma
|
||||||
|
|
||||||
|
namespace category
|
||||||
|
|
||||||
|
definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} :=
|
||||||
|
precategory.mk (λx y : hset, x → y)
|
||||||
|
(λx y z g f a, g (f a))
|
||||||
|
(λx a, a)
|
||||||
|
(λx y z w h g f, eq_of_homotopy (λa, idp))
|
||||||
|
(λx y f, eq_of_homotopy (λa, idp))
|
||||||
|
(λx y f, eq_of_homotopy (λa, idp))
|
||||||
|
|
||||||
|
definition Precategory_hset [reducible] [constructor] : Precategory :=
|
||||||
|
Precategory.mk hset precategory_hset
|
||||||
|
|
||||||
|
abbreviation set [constructor] := Precategory_hset
|
||||||
|
|
||||||
|
namespace set
|
||||||
|
local attribute is_equiv_subtype_eq [instance]
|
||||||
|
definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B :=
|
||||||
|
iso.MK (to_fun f)
|
||||||
|
(to_inv f)
|
||||||
|
(eq_of_homotopy (left_inv (to_fun f)))
|
||||||
|
(eq_of_homotopy (right_inv (to_fun f)))
|
||||||
|
|
||||||
|
definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B :=
|
||||||
|
begin
|
||||||
|
apply equiv.MK (to_hom f) (iso.to_inv f),
|
||||||
|
exact ap10 (to_right_inverse f),
|
||||||
|
exact ap10 (to_left_inverse f)
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_equiv_iso_of_equiv [constructor] (A B : set)
|
||||||
|
: is_equiv (@iso_of_equiv A B) :=
|
||||||
|
adjointify _ (λf, equiv_of_iso f)
|
||||||
|
(λf, proof iso_eq idp qed)
|
||||||
|
(λf, equiv_eq idp)
|
||||||
|
|
||||||
|
local attribute is_equiv_iso_of_equiv [instance]
|
||||||
|
|
||||||
|
definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B =
|
||||||
|
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||||
|
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
|
||||||
|
eq_of_homotopy (λp, eq.rec_on p idp)
|
||||||
|
|
||||||
|
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
|
||||||
|
equiv.MK (λf, iso_of_equiv f)
|
||||||
|
(λf, proof equiv.MK (to_hom f)
|
||||||
|
(iso.to_inv f)
|
||||||
|
(ap10 (to_right_inverse f))
|
||||||
|
(ap10 (to_left_inverse f)) qed)
|
||||||
|
(λf, proof iso_eq idp qed)
|
||||||
|
(λf, proof equiv_eq idp qed)
|
||||||
|
|
||||||
|
definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) :=
|
||||||
|
ua !equiv_equiv_iso
|
||||||
|
|
||||||
|
definition is_univalent_hset (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
|
||||||
|
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||||
|
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
||||||
|
@is_equiv_compose _ _ _ _ _
|
||||||
|
(@is_equiv_compose _ _ _ _ _
|
||||||
|
(@is_equiv_compose _ _ _ _ _
|
||||||
|
_
|
||||||
|
(@is_equiv_subtype_eq_inv _ _ _ _ _))
|
||||||
|
!univalence)
|
||||||
|
!is_equiv_iso_of_equiv,
|
||||||
|
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
|
||||||
|
begin
|
||||||
|
rewrite H₂ at H₁,
|
||||||
|
assumption
|
||||||
|
end
|
||||||
|
end set
|
||||||
|
|
||||||
|
definition category_hset [instance] [constructor] [reducible] : category hset :=
|
||||||
|
category.mk precategory_hset set.is_univalent_hset
|
||||||
|
|
||||||
|
definition Category_hset [reducible] [constructor] : Category :=
|
||||||
|
Category.mk hset category_hset
|
||||||
|
|
||||||
|
abbreviation cset [constructor] := Category_hset
|
||||||
|
|
||||||
|
open functor lift
|
||||||
|
definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
|
||||||
|
functor.mk tlift
|
||||||
|
(λa b, lift_functor)
|
||||||
|
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
|
||||||
|
(λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity))
|
||||||
|
|
||||||
|
open pi sigma.ops
|
||||||
|
|
||||||
|
|
||||||
|
end category
|
|
@ -107,6 +107,6 @@ namespace category
|
||||||
{ intro a b f, induction a: induction b: esimp at *; induction f with f; esimp;
|
{ intro a b f, induction a: induction b: esimp at *; induction f with f; esimp;
|
||||||
try contradiction: apply naturality}
|
try contradiction: apply naturality}
|
||||||
end
|
end
|
||||||
|
infixr ` +n `:65 := sum_nat_trans
|
||||||
|
|
||||||
end category
|
end category
|
||||||
|
|
|
@ -3,12 +3,12 @@ Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Floris van Doorn
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
TODO: move
|
TODO: merge with adjoint
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .adjoint ..yoneda
|
import .adjoint .examples
|
||||||
|
|
||||||
open eq functor nat_trans yoneda iso prod is_trunc
|
open eq functor nat_trans iso prod is_trunc
|
||||||
|
|
||||||
namespace category
|
namespace category
|
||||||
|
|
||||||
|
|
|
@ -5,173 +5,3 @@ Authors: Floris van Doorn
|
||||||
|
|
||||||
Definition of currying and uncurrying of functors
|
Definition of currying and uncurrying of functors
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..constructions.functor ..constructions.product
|
|
||||||
|
|
||||||
open category prod nat_trans eq prod.ops iso equiv
|
|
||||||
|
|
||||||
namespace functor
|
|
||||||
|
|
||||||
variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D)
|
|
||||||
definition functor_curry_ob [reducible] [constructor] (c : C) : E ^c D :=
|
|
||||||
functor.mk (λd, F (c,d))
|
|
||||||
(λd d' g, F (id, g))
|
|
||||||
(λd, !respect_id)
|
|
||||||
(λd₁ d₂ d₃ g' g, calc
|
|
||||||
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_id
|
|
||||||
... = F ((id,g') ∘ (id, g)) : by esimp
|
|
||||||
... = F (id,g') ∘ F (id, g) : by rewrite respect_comp)
|
|
||||||
|
|
||||||
definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c')
|
|
||||||
: functor_curry_ob F c ⟹ functor_curry_ob F c' :=
|
|
||||||
begin
|
|
||||||
fapply nat_trans.mk,
|
|
||||||
{intro d, exact F (f, id)},
|
|
||||||
{intro d d' g, calc
|
|
||||||
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
|
|
||||||
... = F (f, g ∘ id) : by rewrite id_left
|
|
||||||
... = F (f, g) : by rewrite id_right
|
|
||||||
... = F (f ∘ id, g) : by rewrite id_right
|
|
||||||
... = F (f ∘ id, id ∘ g) : by rewrite id_left
|
|
||||||
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ
|
|
||||||
}
|
|
||||||
end
|
|
||||||
local abbreviation Fhom [constructor] := @functor_curry_hom
|
|
||||||
|
|
||||||
theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
|
|
||||||
(Fhom F f) d = to_fun_hom F (f, id) := idp
|
|
||||||
|
|
||||||
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
|
|
||||||
nat_trans_eq (λd, respect_id F _)
|
|
||||||
|
|
||||||
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
|
|
||||||
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
|
||||||
begin
|
|
||||||
apply @nat_trans_eq,
|
|
||||||
intro d, calc
|
|
||||||
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by rewrite functor_curry_hom_def
|
|
||||||
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
|
|
||||||
... = F ((f',id) ∘ (f, id)) : by esimp
|
|
||||||
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
|
|
||||||
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
|
|
||||||
end
|
|
||||||
|
|
||||||
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
|
|
||||||
functor.mk (functor_curry_ob F)
|
|
||||||
(functor_curry_hom F)
|
|
||||||
(functor_curry_id F)
|
|
||||||
(functor_curry_comp F)
|
|
||||||
|
|
||||||
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
|
|
||||||
to_fun_ob (G p.1) p.2
|
|
||||||
|
|
||||||
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p')
|
|
||||||
: functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' :=
|
|
||||||
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
|
|
||||||
local abbreviation Ghom := @functor_uncurry_hom
|
|
||||||
|
|
||||||
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
|
|
||||||
calc
|
|
||||||
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
|
|
||||||
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
|
|
||||||
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
|
|
||||||
... = id : id_id
|
|
||||||
|
|
||||||
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
|
|
||||||
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
|
|
||||||
calc
|
|
||||||
Ghom G (f' ∘ f)
|
|
||||||
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
|
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
|
||||||
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
|
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
|
||||||
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
|
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
|
||||||
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
|
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
|
|
||||||
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
|
|
||||||
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
|
|
||||||
... = Ghom G f' ∘ Ghom G f : by esimp
|
|
||||||
|
|
||||||
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
|
|
||||||
functor.mk (functor_uncurry_ob G)
|
|
||||||
(functor_uncurry_hom G)
|
|
||||||
(functor_uncurry_id G)
|
|
||||||
(functor_uncurry_comp G)
|
|
||||||
|
|
||||||
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
|
||||||
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
|
|
||||||
begin
|
|
||||||
intro cd cd' fg,
|
|
||||||
cases cd with c d, cases cd' with c' d', cases fg with f g,
|
|
||||||
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
|
|
||||||
apply id_leftright,
|
|
||||||
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
|
||||||
from calc
|
|
||||||
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
|
|
||||||
... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)]
|
|
||||||
... = F (f, g ∘ id) : by rewrite id_left
|
|
||||||
... = F (f,g) : by rewrite id_right,
|
|
||||||
end
|
|
||||||
|
|
||||||
definition functor_curry_functor_uncurry_ob (c : C)
|
|
||||||
: functor_curry (functor_uncurry G) c = G c :=
|
|
||||||
begin
|
|
||||||
fapply functor_eq,
|
|
||||||
{ intro d, reflexivity},
|
|
||||||
{ intro d d' g, refine !id_leftright ⬝ _, esimp,
|
|
||||||
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
|
|
||||||
end
|
|
||||||
|
|
||||||
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
|
|
||||||
begin
|
|
||||||
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
|
|
||||||
intro c c' f,
|
|
||||||
fapply nat_trans_eq,
|
|
||||||
intro d,
|
|
||||||
apply concat,
|
|
||||||
{apply (ap (λx, x ∘ _)),
|
|
||||||
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
|
|
||||||
apply concat,
|
|
||||||
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
|
|
||||||
apply concat, apply natural_map_inv_of_eq,
|
|
||||||
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
|
|
||||||
apply concat, apply id_leftright,
|
|
||||||
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
|
|
||||||
apply id_left
|
|
||||||
end
|
|
||||||
|
|
||||||
definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory)
|
|
||||||
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
|
|
||||||
equiv.MK functor_curry
|
|
||||||
functor_uncurry
|
|
||||||
functor_curry_functor_uncurry
|
|
||||||
functor_uncurry_functor_curry
|
|
||||||
|
|
||||||
variables {F F' G G'}
|
|
||||||
definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C)
|
|
||||||
: functor_curry_ob F c ⟹ functor_curry_ob F' c :=
|
|
||||||
begin
|
|
||||||
fapply nat_trans.mk: esimp,
|
|
||||||
{ intro d, exact η (c, d)},
|
|
||||||
{ intro d d' f, apply naturality}
|
|
||||||
end
|
|
||||||
|
|
||||||
definition nat_trans_curry [constructor] (η : F ⟹ F')
|
|
||||||
: functor_curry F ⟹ functor_curry F' :=
|
|
||||||
begin
|
|
||||||
fapply nat_trans.mk: esimp,
|
|
||||||
{ exact nat_trans_curry_nat η},
|
|
||||||
{ intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality}
|
|
||||||
end
|
|
||||||
|
|
||||||
definition nat_trans_uncurry [constructor] (η : G ⟹ G')
|
|
||||||
: functor_uncurry G ⟹ functor_uncurry G' :=
|
|
||||||
begin
|
|
||||||
fapply nat_trans.mk: esimp,
|
|
||||||
{ intro v, unfold functor_uncurry_ob, exact (η v.1) v.2},
|
|
||||||
{ intro v w f, unfold functor_uncurry_hom,
|
|
||||||
rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]}
|
|
||||||
end
|
|
||||||
|
|
||||||
end functor
|
|
||||||
|
|
208
hott/algebra/category/functor/examples.hlean
Normal file
208
hott/algebra/category/functor/examples.hlean
Normal file
|
@ -0,0 +1,208 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Definition of functors involving at least two different constructions of categories
|
||||||
|
-/
|
||||||
|
|
||||||
|
import ..constructions.functor ..constructions.product ..constructions.opposite
|
||||||
|
..constructions.set
|
||||||
|
|
||||||
|
open category nat_trans eq prod prod.ops
|
||||||
|
|
||||||
|
namespace functor
|
||||||
|
|
||||||
|
section
|
||||||
|
open iso equiv
|
||||||
|
variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D)
|
||||||
|
/- currying a functor -/
|
||||||
|
definition functor_curry_ob [reducible] [constructor] (c : C) : D ⇒ E :=
|
||||||
|
F ∘f (constant_functor D c ×f 1)
|
||||||
|
|
||||||
|
definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c')
|
||||||
|
: functor_curry_ob F c ⟹ functor_curry_ob F c' :=
|
||||||
|
F ∘fn (constant_nat_trans D f ×n 1)
|
||||||
|
|
||||||
|
local abbreviation Fhom [constructor] := @functor_curry_hom
|
||||||
|
|
||||||
|
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
|
||||||
|
nat_trans_eq (λd, respect_id F _)
|
||||||
|
|
||||||
|
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
|
||||||
|
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
||||||
|
begin
|
||||||
|
apply @nat_trans_eq,
|
||||||
|
intro d, calc
|
||||||
|
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by esimp
|
||||||
|
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
|
||||||
|
... = F ((f',id) ∘ (f, id)) : by esimp
|
||||||
|
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
|
||||||
|
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
|
||||||
|
end
|
||||||
|
|
||||||
|
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
|
||||||
|
functor.mk (functor_curry_ob F)
|
||||||
|
(functor_curry_hom F)
|
||||||
|
(functor_curry_id F)
|
||||||
|
(functor_curry_comp F)
|
||||||
|
|
||||||
|
/- uncurrying a functor -/
|
||||||
|
|
||||||
|
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
|
||||||
|
to_fun_ob (G p.1) p.2
|
||||||
|
|
||||||
|
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p')
|
||||||
|
: functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' :=
|
||||||
|
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
|
||||||
|
local abbreviation Ghom := @functor_uncurry_hom
|
||||||
|
|
||||||
|
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
|
||||||
|
calc
|
||||||
|
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
|
||||||
|
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
|
||||||
|
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
|
||||||
|
... = id : id_id
|
||||||
|
|
||||||
|
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
|
||||||
|
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
|
||||||
|
calc
|
||||||
|
Ghom G (f' ∘ f)
|
||||||
|
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
|
||||||
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
|
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
|
||||||
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
|
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
|
||||||
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
|
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
|
||||||
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
|
||||||
|
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
|
||||||
|
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
|
||||||
|
... = Ghom G f' ∘ Ghom G f : by esimp
|
||||||
|
|
||||||
|
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
|
||||||
|
functor.mk (functor_uncurry_ob G)
|
||||||
|
(functor_uncurry_hom G)
|
||||||
|
(functor_uncurry_id G)
|
||||||
|
(functor_uncurry_comp G)
|
||||||
|
|
||||||
|
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
||||||
|
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
|
||||||
|
begin
|
||||||
|
intro cd cd' fg,
|
||||||
|
cases cd with c d, cases cd' with c' d', cases fg with f g,
|
||||||
|
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
|
||||||
|
apply id_leftright,
|
||||||
|
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
||||||
|
from calc
|
||||||
|
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
|
||||||
|
... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)]
|
||||||
|
... = F (f, g ∘ id) : by rewrite id_left
|
||||||
|
... = F (f,g) : by rewrite id_right,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition functor_curry_functor_uncurry_ob (c : C)
|
||||||
|
: functor_curry (functor_uncurry G) c = G c :=
|
||||||
|
begin
|
||||||
|
fapply functor_eq,
|
||||||
|
{ intro d, reflexivity},
|
||||||
|
{ intro d d' g, refine !id_leftright ⬝ _, esimp,
|
||||||
|
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
|
||||||
|
begin
|
||||||
|
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
|
||||||
|
intro c c' f,
|
||||||
|
fapply nat_trans_eq,
|
||||||
|
intro d,
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, x ∘ _)),
|
||||||
|
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
|
||||||
|
apply concat, apply natural_map_inv_of_eq,
|
||||||
|
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
|
||||||
|
apply concat, apply id_leftright,
|
||||||
|
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
|
||||||
|
apply id_left
|
||||||
|
end
|
||||||
|
|
||||||
|
/-
|
||||||
|
This only states that the carriers of (C ^ D) ^ E and C ^ (E × D) are equivalent.
|
||||||
|
In [exponential laws] we prove that these are in fact isomorphic categories
|
||||||
|
-/
|
||||||
|
definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory)
|
||||||
|
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
|
||||||
|
equiv.MK functor_curry
|
||||||
|
functor_uncurry
|
||||||
|
functor_curry_functor_uncurry
|
||||||
|
functor_uncurry_functor_curry
|
||||||
|
|
||||||
|
variables {F F' G G'}
|
||||||
|
definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C)
|
||||||
|
: functor_curry_ob F c ⟹ functor_curry_ob F' c :=
|
||||||
|
begin
|
||||||
|
fapply nat_trans.mk: esimp,
|
||||||
|
{ intro d, exact η (c, d)},
|
||||||
|
{ intro d d' f, apply naturality}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition nat_trans_curry [constructor] (η : F ⟹ F')
|
||||||
|
: functor_curry F ⟹ functor_curry F' :=
|
||||||
|
begin
|
||||||
|
fapply nat_trans.mk: esimp,
|
||||||
|
{ exact nat_trans_curry_nat η},
|
||||||
|
{ intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition nat_trans_uncurry [constructor] (η : G ⟹ G')
|
||||||
|
: functor_uncurry G ⟹ functor_uncurry G' :=
|
||||||
|
begin
|
||||||
|
fapply nat_trans.mk: esimp,
|
||||||
|
{ intro v, unfold functor_uncurry_ob, exact (η v.1) v.2},
|
||||||
|
{ intro v w f, unfold functor_uncurry_hom,
|
||||||
|
rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]}
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
section
|
||||||
|
open is_trunc
|
||||||
|
|
||||||
|
/- hom-functors -/
|
||||||
|
|
||||||
|
definition hom_functor_assoc {C : Precategory} {a1 a2 a3 a4 a5 a6 : C}
|
||||||
|
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
|
||||||
|
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
|
||||||
|
calc
|
||||||
|
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
|
||||||
|
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
|
||||||
|
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
|
||||||
|
... = _ : by rewrite (assoc f2 f3 f4)
|
||||||
|
|
||||||
|
-- the functor hom(-,-)
|
||||||
|
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
|
||||||
|
functor.mk
|
||||||
|
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
|
||||||
|
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
|
||||||
|
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
|
||||||
|
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
|
||||||
|
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
|
||||||
|
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @hom_functor_assoc) end)
|
||||||
|
|
||||||
|
-- the functor hom(-, c)
|
||||||
|
definition hom_functor_left.{u v} [constructor] (C : Precategory.{u v}) (c : C)
|
||||||
|
: Cᵒᵖ ⇒ set.{v} :=
|
||||||
|
hom_functor C ∘f (1 ×f constant_functor Cᵒᵖ c)
|
||||||
|
|
||||||
|
-- the functor hom(c, -)
|
||||||
|
definition hom_functor_right.{u v} [constructor] (C : Precategory.{u v}) (c : C)
|
||||||
|
: C ⇒ set.{v} :=
|
||||||
|
hom_functor C ∘f (constant_functor C c ×f 1)
|
||||||
|
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end functor
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn, Jakob von Raumer
|
||||||
Exponential laws
|
Exponential laws
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .equivalence .curry
|
import .equivalence .examples
|
||||||
..constructions.terminal ..constructions.initial ..constructions.product ..constructions.sum
|
..constructions.terminal ..constructions.initial ..constructions.product ..constructions.sum
|
||||||
..constructions.discrete
|
..constructions.discrete
|
||||||
|
|
||||||
|
|
|
@ -1,11 +1,14 @@
|
||||||
algebra.category.functor
|
algebra.category.functor
|
||||||
========================
|
========================
|
||||||
|
|
||||||
|
Functors, functor attributes, equivalences, isomorphism, adjointness.
|
||||||
|
|
||||||
* [basic](basic.hlean) : Definition and basic properties of functors
|
* [basic](basic.hlean) : Definition and basic properties of functors
|
||||||
* [curry](curry.hlean) : Define currying and uncurrying of functors
|
* [examples](examples.hlean) : Constructions of functors between categories, involving more than one category in the [constructions](../constructions/constructions.md) folder (functors which only depend on one constructions are in the corresponding file). This includes the currying and uncurrying of functors
|
||||||
* [attributes](attributes.hlean): Attributes of functors (full, faithful, split essentially surjective, ...)
|
* [attributes](attributes.hlean): Attributes of functors (full, faithful, split essentially surjective, ...)
|
||||||
* [adjoint](adjoint.hlean) : Adjoint functors and equivalences
|
* [adjoint](adjoint.hlean) : Adjoint functors and equivalences
|
||||||
* [equivalence](equivalence.hlean) : Equivalences and Isomorphisms
|
* [equivalence](equivalence.hlean) : Equivalences and Isomorphisms
|
||||||
* [exponential_laws](exponential_laws.hlean)
|
* [exponential_laws](exponential_laws.hlean)
|
||||||
|
* [yoneda](yoneda.hlean) : the Yoneda Embedding
|
||||||
|
|
||||||
Note: the functor category is defined in [constructions.functor](../constructions/functor.hlean).
|
Note: the functor category is defined in [constructions.functor](../constructions/functor.hlean). Functors preserving limits is in [limits.functor_preserve](../limits/functor_preserve.hlean).
|
|
@ -6,30 +6,12 @@ Authors: Floris van Doorn
|
||||||
Yoneda embedding and Yoneda lemma
|
Yoneda embedding and Yoneda lemma
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .functor.curry .constructions.hset .constructions.opposite .functor.attributes
|
import .examples .attributes
|
||||||
|
|
||||||
open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift
|
open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift
|
||||||
|
|
||||||
namespace yoneda
|
namespace yoneda
|
||||||
|
|
||||||
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
|
|
||||||
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
|
|
||||||
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
|
|
||||||
calc
|
|
||||||
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
|
|
||||||
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
|
|
||||||
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
|
|
||||||
... = _ : by rewrite (assoc f2 f3 f4)
|
|
||||||
|
|
||||||
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
|
|
||||||
functor.mk
|
|
||||||
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
|
|
||||||
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
|
|
||||||
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
|
|
||||||
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
|
|
||||||
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
|
|
||||||
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @representable_functor_assoc) end)
|
|
||||||
|
|
||||||
/-
|
/-
|
||||||
These attributes make sure that the fields of the category "set" reduce to the right things
|
These attributes make sure that the fields of the category "set" reduce to the right things
|
||||||
However, we don't want to have them globally, because that will unfold the composition g ∘ f
|
However, we don't want to have them globally, because that will unfold the composition g ∘ f
|
||||||
|
@ -45,6 +27,7 @@ namespace yoneda
|
||||||
definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
|
definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
|
||||||
functor_curry (!hom_functor ∘f !prod_flip_functor)
|
functor_curry (!hom_functor ∘f !prod_flip_functor)
|
||||||
|
|
||||||
|
|
||||||
notation `ɏ` := yoneda_embedding _
|
notation `ɏ` := yoneda_embedding _
|
||||||
|
|
||||||
definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset)
|
definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset)
|
|
@ -6,9 +6,9 @@ Authors: Floris van Doorn
|
||||||
colimit_functor ⊣ Δ ⊣ limit_functor
|
colimit_functor ⊣ Δ ⊣ limit_functor
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..colimits ..functor.adjoint2
|
import .colimits ..functor.adjoint2
|
||||||
|
|
||||||
open functor category is_trunc prod yoneda --remove
|
open functor category is_trunc prod
|
||||||
|
|
||||||
namespace category
|
namespace category
|
||||||
|
|
||||||
|
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn
|
||||||
Colimits in a category
|
Colimits in a category
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .limits .constructions.opposite
|
import .limits ..constructions.opposite
|
||||||
|
|
||||||
open is_trunc functor nat_trans eq
|
open is_trunc functor nat_trans eq
|
||||||
|
|
7
hott/algebra/category/limits/default.hlean
Normal file
7
hott/algebra/category/limits/default.hlean
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
-/
|
||||||
|
|
||||||
|
import .limits .colimits
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn, Jakob von Raumer
|
||||||
Functor category has (co)limits if the codomain has them
|
Functor category has (co)limits if the codomain has them
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..colimits
|
import .colimits
|
||||||
|
|
||||||
open functor nat_trans eq is_trunc
|
open functor nat_trans eq is_trunc
|
||||||
|
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn
|
||||||
Functors preserving limits
|
Functors preserving limits
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..colimits ..yoneda
|
import .colimits ..functor.yoneda
|
||||||
|
|
||||||
open functor yoneda is_trunc nat_trans
|
open functor yoneda is_trunc nat_trans
|
||||||
|
|
||||||
|
|
|
@ -6,8 +6,8 @@ Authors: Floris van Doorn
|
||||||
Limits in a category
|
Limits in a category
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .constructions.cone .constructions.discrete .constructions.product
|
import ..constructions.cone ..constructions.discrete ..constructions.product
|
||||||
.constructions.finite_cats .category .constructions.functor
|
..constructions.finite_cats ..category ..constructions.functor
|
||||||
|
|
||||||
open is_trunc functor nat_trans eq
|
open is_trunc functor nat_trans eq
|
||||||
|
|
8
hott/algebra/category/limits/limits.md
Normal file
8
hott/algebra/category/limits/limits.md
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
algebra.category.limits
|
||||||
|
=======================
|
||||||
|
|
||||||
|
* [limits](limits.hlean) : Limits in a category, defined as terminal object in the cone category
|
||||||
|
* [colimits](colimits.hlean) : Colimits in a category, defined as the limit of the opposite functor
|
||||||
|
* [complete](complete.hlean) : Categories which are (co)complete or constructions which preserve (co)completeness
|
||||||
|
* [functor_preserve](functor_preserve.hlean) : Functors which preserve limits and colimits
|
||||||
|
* [adjoint](adjoint.hlean) : the (co)limit functor is adjoint to the diagonal map
|
|
@ -3,101 +3,14 @@ Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Floris van Doorn, Jakob von Raumer
|
Authors: Floris van Doorn, Jakob von Raumer
|
||||||
|
|
||||||
Category of hsets
|
The category of sets is complete and cocomplete
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..category types.equiv types.lift ..colimits hit.set_quotient
|
import .colimits ..constructions.set hit.set_quotient
|
||||||
|
|
||||||
open eq category equiv iso is_equiv is_trunc function sigma set_quotient trunc
|
open eq functor is_trunc sigma pi sigma.ops trunc set_quotient
|
||||||
|
|
||||||
namespace category
|
namespace category
|
||||||
|
|
||||||
definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} :=
|
|
||||||
precategory.mk (λx y : hset, x → y)
|
|
||||||
(λx y z g f a, g (f a))
|
|
||||||
(λx a, a)
|
|
||||||
(λx y z w h g f, eq_of_homotopy (λa, idp))
|
|
||||||
(λx y f, eq_of_homotopy (λa, idp))
|
|
||||||
(λx y f, eq_of_homotopy (λa, idp))
|
|
||||||
|
|
||||||
definition Precategory_hset [reducible] [constructor] : Precategory :=
|
|
||||||
Precategory.mk hset precategory_hset
|
|
||||||
|
|
||||||
abbreviation set [constructor] := Precategory_hset
|
|
||||||
|
|
||||||
namespace set
|
|
||||||
local attribute is_equiv_subtype_eq [instance]
|
|
||||||
definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B :=
|
|
||||||
iso.MK (to_fun f)
|
|
||||||
(to_inv f)
|
|
||||||
(eq_of_homotopy (left_inv (to_fun f)))
|
|
||||||
(eq_of_homotopy (right_inv (to_fun f)))
|
|
||||||
|
|
||||||
definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B :=
|
|
||||||
begin
|
|
||||||
apply equiv.MK (to_hom f) (iso.to_inv f),
|
|
||||||
exact ap10 (to_right_inverse f),
|
|
||||||
exact ap10 (to_left_inverse f)
|
|
||||||
end
|
|
||||||
|
|
||||||
definition is_equiv_iso_of_equiv [constructor] (A B : set)
|
|
||||||
: is_equiv (@iso_of_equiv A B) :=
|
|
||||||
adjointify _ (λf, equiv_of_iso f)
|
|
||||||
(λf, proof iso_eq idp qed)
|
|
||||||
(λf, equiv_eq idp)
|
|
||||||
|
|
||||||
local attribute is_equiv_iso_of_equiv [instance]
|
|
||||||
|
|
||||||
definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B =
|
|
||||||
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
|
||||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
|
|
||||||
eq_of_homotopy (λp, eq.rec_on p idp)
|
|
||||||
|
|
||||||
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
|
|
||||||
equiv.MK (λf, iso_of_equiv f)
|
|
||||||
(λf, proof equiv.MK (to_hom f)
|
|
||||||
(iso.to_inv f)
|
|
||||||
(ap10 (to_right_inverse f))
|
|
||||||
(ap10 (to_left_inverse f)) qed)
|
|
||||||
(λf, proof iso_eq idp qed)
|
|
||||||
(λf, proof equiv_eq idp qed)
|
|
||||||
|
|
||||||
definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) :=
|
|
||||||
ua !equiv_equiv_iso
|
|
||||||
|
|
||||||
definition is_univalent_hset (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
|
|
||||||
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
|
||||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
|
||||||
@is_equiv_compose _ _ _ _ _
|
|
||||||
(@is_equiv_compose _ _ _ _ _
|
|
||||||
(@is_equiv_compose _ _ _ _ _
|
|
||||||
_
|
|
||||||
(@is_equiv_subtype_eq_inv _ _ _ _ _))
|
|
||||||
!univalence)
|
|
||||||
!is_equiv_iso_of_equiv,
|
|
||||||
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
|
|
||||||
begin
|
|
||||||
rewrite H₂ at H₁,
|
|
||||||
assumption
|
|
||||||
end
|
|
||||||
end set
|
|
||||||
|
|
||||||
definition category_hset [instance] [constructor] [reducible] : category hset :=
|
|
||||||
category.mk precategory_hset set.is_univalent_hset
|
|
||||||
|
|
||||||
definition Category_hset [reducible] [constructor] : Category :=
|
|
||||||
Category.mk hset category_hset
|
|
||||||
|
|
||||||
abbreviation cset [constructor] := Category_hset
|
|
||||||
|
|
||||||
open functor lift
|
|
||||||
definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
|
|
||||||
functor.mk tlift
|
|
||||||
(λa b, lift_functor)
|
|
||||||
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
|
|
||||||
(λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity))
|
|
||||||
|
|
||||||
open pi sigma.ops
|
|
||||||
local attribute Category.to.precategory [unfold 1]
|
local attribute Category.to.precategory [unfold 1]
|
||||||
local attribute category.to_precategory [unfold 2]
|
local attribute category.to_precategory [unfold 2]
|
||||||
|
|
||||||
|
@ -154,6 +67,7 @@ namespace category
|
||||||
{ exact _}
|
{ exact _}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
definition is_cocomplete_set_cone.{u v w} [constructor]
|
definition is_cocomplete_set_cone.{u v w} [constructor]
|
||||||
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F :=
|
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F :=
|
||||||
begin
|
begin
|
||||||
|
@ -189,6 +103,4 @@ namespace category
|
||||||
{ intro v w r, apply is_hprop.elimo}}},
|
{ intro v w r, apply is_hprop.elimo}}},
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
end category
|
end category
|
|
@ -29,7 +29,9 @@ The rows indicate the chapters, the columns the sections.
|
||||||
|
|
||||||
Theorems and definitions in the library which are not in the book:
|
Theorems and definitions in the library which are not in the book:
|
||||||
|
|
||||||
* One major difference is that in this library we heavily use pathovers, so we need less theorems about transports, but instead corresponding theorems about pathovers. These are in [init.pathover](init/pathover.hlean). For higher paths there are [squares](cubical/square.hlean), [squareovers](cubical/squareover.hlean), and the rudiments of [cubes](cubical/cube.hlean) and [cubeovers](cubical/cubeover.hlean).
|
* A major difference is that in this library we heavily use pathovers [D. Licata, G. Brunerie. A Cubical Approach to Synthetic Homotopy Theory]. This means that we need less theorems about transports, but instead corresponding theorems about pathovers. These are in [init.pathover](init/pathover.hlean). For higher paths there are [squares](cubical/square.hlean), [squareovers](cubical/squareover.hlean), and the rudiments of [cubes](cubical/cube.hlean) and [cubeovers](cubical/cubeover.hlean).
|
||||||
|
|
||||||
|
* The category theory library is more extensive than what is presented in the book. For example, we have [limits](algebra/category/limits/limits.md).
|
||||||
|
|
||||||
Chapter 1: Type theory
|
Chapter 1: Type theory
|
||||||
---------
|
---------
|
||||||
|
@ -159,7 +161,7 @@ Every file is in the folder [algebra.category](algebra/category/category.md)
|
||||||
- 9.2 (Functors and transformations): [functor.basic](algebra/category/functor/basic.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean)
|
- 9.2 (Functors and transformations): [functor.basic](algebra/category/functor/basic.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean)
|
||||||
- 9.3 (Adjunctions): [functor.adjoint](algebra/category/functor/adjoint.hlean)
|
- 9.3 (Adjunctions): [functor.adjoint](algebra/category/functor/adjoint.hlean)
|
||||||
- 9.4 (Equivalences): [functor.equivalence](algebra/category/functor/equivalence.hlean) and [functor.attributes](algebra/category/functor/attributes.hlean) (partially)
|
- 9.4 (Equivalences): [functor.equivalence](algebra/category/functor/equivalence.hlean) and [functor.attributes](algebra/category/functor/attributes.hlean) (partially)
|
||||||
- 9.5 (The Yoneda lemma): [constructions.opposite](algebra/category/constructions/opposite.hlean), [constructions.product](algebra/category/constructions/product.hlean), [yoneda](algebra/category/yoneda.hlean) (up to Theorem 9.5.9)
|
- 9.5 (The Yoneda lemma): [constructions.opposite](algebra/category/constructions/opposite.hlean), [constructions.product](algebra/category/constructions/product.hlean), [functor.yoneda](algebra/category/functor/yoneda.hlean) (up to Theorem 9.5.9)
|
||||||
- 9.6 (Strict categories): [strict](algebra/category/strict.hlean) (only definition)
|
- 9.6 (Strict categories): [strict](algebra/category/strict.hlean) (only definition)
|
||||||
- 9.7 (†-categories): not formalized
|
- 9.7 (†-categories): not formalized
|
||||||
- 9.8 (The structure identity principle): not formalized
|
- 9.8 (The structure identity principle): not formalized
|
||||||
|
|
|
@ -41,7 +41,7 @@
|
||||||
"⁻¹ᵉ" "⁻¹ᶠ" "⁻¹ᵍ" "⁻¹ʰ" "⁻¹ⁱ" "⁻¹ᵐ" "⁻¹ᵒ" "⁻¹ᵖ" "⁻¹ʳ" "⁻¹ᵛ" "⁻¹ˢ" "⁻²" "⁻²ᵒ"
|
"⁻¹ᵉ" "⁻¹ᶠ" "⁻¹ᵍ" "⁻¹ʰ" "⁻¹ⁱ" "⁻¹ᵐ" "⁻¹ᵒ" "⁻¹ᵖ" "⁻¹ʳ" "⁻¹ᵛ" "⁻¹ˢ" "⁻²" "⁻²ᵒ"
|
||||||
"⬝e" "⬝i" "⬝o" "⬝op" "⬝po" "⬝h" "⬝v" "⬝hp" "⬝vp" "⬝ph" "⬝pv" "⬝r" "◾" "◾o"
|
"⬝e" "⬝i" "⬝o" "⬝op" "⬝po" "⬝h" "⬝v" "⬝hp" "⬝vp" "⬝ph" "⬝pv" "⬝r" "◾" "◾o"
|
||||||
"∘n" "∘f" "∘fi" "∘nf" "∘fn" "∘n1f" "∘1nf" "∘f1n" "∘fn1"
|
"∘n" "∘f" "∘fi" "∘nf" "∘fn" "∘n1f" "∘1nf" "∘f1n" "∘fn1"
|
||||||
"^c" "≃c" "≅c" "×c" "×f" "+c" "+f")
|
"^c" "≃c" "≅c" "×c" "×f" "×n" "+c" "+f" "+n")
|
||||||
"lean constants")
|
"lean constants")
|
||||||
(defconst lean-constants-regexp (regexp-opt lean-constants))
|
(defconst lean-constants-regexp (regexp-opt lean-constants))
|
||||||
(defconst lean-numerals-regexp
|
(defconst lean-numerals-regexp
|
||||||
|
|
Loading…
Reference in a new issue