lean2/hott/algebra/category/functor/examples.hlean

208 lines
8.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Definition of functors involving at least two different constructions of categories
-/
import ..constructions.functor ..constructions.product ..constructions.opposite
..constructions.set
open category nat_trans eq prod prod.ops
namespace functor
section
open iso equiv
variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D)
/- currying a functor -/
definition functor_curry_ob [reducible] [constructor] (c : C) : D ⇒ E :=
F ∘f (constant_functor D c ×f 1)
definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c')
: functor_curry_ob F c ⟹ functor_curry_ob F c' :=
F ∘fn (constant_nat_trans D f ×n 1)
local abbreviation Fhom [constructor] := @functor_curry_hom
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
nat_trans_eq (λd, respect_id F _)
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
begin
apply @nat_trans_eq,
intro d, calc
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by esimp
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
... = F ((f',id) ∘ (f, id)) : by esimp
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
end
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_hom F)
(functor_curry_id F)
(functor_curry_comp F)
/- uncurrying a functor -/
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
to_fun_ob (G p.1) p.2
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p')
: functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' :=
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
local abbreviation Ghom := @functor_uncurry_hom
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
calc
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
... = id : id_id
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
calc
Ghom G (f' ∘ f)
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
... = Ghom G f' ∘ Ghom G f : by esimp
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
functor.mk (functor_uncurry_ob G)
(functor_uncurry_hom G)
(functor_uncurry_id G)
(functor_uncurry_comp G)
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
begin
intro cd cd' fg,
cases cd with c d, cases cd' with c' d', cases fg with f g,
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
apply id_leftright,
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
from calc
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)]
... = F (f, g ∘ id) : by rewrite id_left
... = F (f,g) : by rewrite id_right,
end
definition functor_curry_functor_uncurry_ob (c : C)
: functor_curry (functor_uncurry G) c = G c :=
begin
fapply functor_eq,
{ intro d, reflexivity},
{ intro d d' g, refine !id_leftright ⬝ _, esimp,
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
end
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
intro c c' f,
fapply nat_trans_eq,
intro d,
apply concat,
{apply (ap (λx, x ∘ _)),
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
apply concat,
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
apply concat, apply natural_map_inv_of_eq,
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
apply concat, apply id_leftright,
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
apply id_left
end
/-
This only states that the carriers of (C ^ D) ^ E and C ^ (E × D) are equivalent.
In [exponential laws] we prove that these are in fact isomorphic categories
-/
definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory)
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.MK functor_curry
functor_uncurry
functor_curry_functor_uncurry
functor_uncurry_functor_curry
variables {F F' G G'}
definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C)
: functor_curry_ob F c ⟹ functor_curry_ob F' c :=
begin
fapply nat_trans.mk: esimp,
{ intro d, exact η (c, d)},
{ intro d d' f, apply naturality}
end
definition nat_trans_curry [constructor] (η : F ⟹ F')
: functor_curry F ⟹ functor_curry F' :=
begin
fapply nat_trans.mk: esimp,
{ exact nat_trans_curry_nat η},
{ intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality}
end
definition nat_trans_uncurry [constructor] (η : G ⟹ G')
: functor_uncurry G ⟹ functor_uncurry G' :=
begin
fapply nat_trans.mk: esimp,
{ intro v, unfold functor_uncurry_ob, exact (η v.1) v.2},
{ intro v w f, unfold functor_uncurry_hom,
rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]}
end
end
section
open is_trunc
/- hom-functors -/
definition hom_functor_assoc {C : Precategory} {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
... = _ : by rewrite (assoc f2 f3 f4)
-- the functor hom(-,-)
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
functor.mk
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @hom_functor_assoc) end)
-- the functor hom(-, c)
definition hom_functor_left.{u v} [constructor] (C : Precategory.{u v}) (c : C)
: Cᵒᵖ ⇒ set.{v} :=
hom_functor C ∘f (1 ×f constant_functor Cᵒᵖ c)
-- the functor hom(c, -)
definition hom_functor_right.{u v} [constructor] (C : Precategory.{u v}) (c : C)
: C ⇒ set.{v} :=
hom_functor C ∘f (constant_functor C c ×f 1)
end
end functor