refactor(library/standard): collect notation in general_notation

This commit is contained in:
Jeremy Avigad 2014-08-22 16:36:47 -07:00 committed by Leonardo de Moura
parent ad969b4695
commit 47a1c00a6d
22 changed files with 285 additions and 178 deletions

View file

@ -49,7 +49,7 @@ bool_rec (bool_rec ff tt b) tt a
theorem bor_tt_left (a : bool) : bor tt a = tt := theorem bor_tt_left (a : bool) : bor tt a = tt :=
refl (bor tt a) refl (bor tt a)
infixl `||`:65 := bor infixl `||` := bor
theorem bor_tt_right (a : bool) : a || tt = tt := theorem bor_tt_right (a : bool) : a || tt = tt :=
cases_on a (refl (ff || tt)) (refl (tt || tt)) cases_on a (refl (ff || tt)) (refl (tt || tt))
@ -87,7 +87,7 @@ bool_rec
definition band (a b : bool) := definition band (a b : bool) :=
bool_rec ff (bool_rec ff tt b) a bool_rec ff (bool_rec ff tt b) a
infixl `&&`:75 := band infixl `&&` := band
theorem band_ff_left (a : bool) : ff && a = ff := theorem band_ff_left (a : bool) : ff && a = ff :=
refl (ff && a) refl (ff && a)
@ -132,7 +132,7 @@ band_eq_tt_elim_left (trans (band_comm b a) H)
definition bnot (a : bool) := bool_rec tt ff a definition bnot (a : bool) := bool_rec tt ff a
prefix `!`:85 := bnot notation `!` x:max := bnot x
theorem bnot_bnot (a : bool) : !!a = a := theorem bnot_bnot (a : bool) : !!a = a :=
cases_on a (refl (!!ff)) (refl (!!tt)) cases_on a (refl (!!ff)) (refl (!!tt))

View file

@ -189,7 +189,7 @@ representative_map_idempotent_equiv proj_rel @proj_congr a
-- ## Definition of and basic theorems and definitions -- ## Definition of and basic theorems and definitions
definition int := image proj definition int := image proj
notation ``:max := int notation `` := int
definition psub : × := fun_image proj definition psub : × := fun_image proj
definition rep : × := subtype.elt_of definition rep : × := subtype.elt_of
@ -221,15 +221,12 @@ eq_abs quotient H
definition to_nat : := rec_constant quotient (fun v, dist (pr1 v) (pr2 v)) definition to_nat : := rec_constant quotient (fun v, dist (pr1 v) (pr2 v))
-- TODO: set binding strength: is this right?
notation `|`:40 x:40 `|` := to_nat x
theorem to_nat_comp (n m : ) : (to_nat (psub (pair n m))) = dist n m := theorem to_nat_comp (n m : ) : (to_nat (psub (pair n m))) = dist n m :=
have H : ∀v w : × , rel v w → dist (pr1 v) (pr2 v) = dist (pr1 w) (pr2 w), have H : ∀v w : × , rel v w → dist (pr1 v) (pr2 v) = dist (pr1 w) (pr2 w),
from take v w H, dist_eq_intro H, from take v w H, dist_eq_intro H,
have H2 : ∀v : × , (to_nat (psub v)) = dist (pr1 v) (pr2 v), have H2 : ∀v : × , (to_nat (psub v)) = dist (pr1 v) (pr2 v),
from take v, (comp_constant quotient H (rel_refl v)), from take v, (comp_constant quotient H (rel_refl v)),
(by simp) H2 (pair n m) iff_mp (by simp) H2 (pair n m)
-- add_rewrite to_nat_comp --local -- add_rewrite to_nat_comp --local
@ -263,20 +260,20 @@ calc
definition neg : := quotient_map quotient flip definition neg : := quotient_map quotient flip
-- TODO: is this good? -- TODO: is this good? Note: replacing 100 by max makes it bind stronger than application.
prefix `-`:80 := neg notation `-` x:100 := neg x
theorem neg_comp (n m : ) : -psub (pair n m) = psub (pair m n) := theorem neg_comp (n m : ) : -(psub (pair n m)) = psub (pair m n) :=
have H : ∀a, -psub a = psub (flip a), have H : ∀a, -(psub a) = psub (flip a),
from take a, comp_quotient_map quotient @rel_flip (rel_refl _), from take a, comp_quotient_map quotient @rel_flip (rel_refl _),
calc calc
-psub (pair n m) = psub (flip (pair n m)) : H (pair n m) -(psub (pair n m)) = psub (flip (pair n m)) : H (pair n m)
... = psub (pair m n) : by simp ... = psub (pair m n) : by simp
-- add_rewrite neg_comp --local -- add_rewrite neg_comp --local
theorem neg_zero : -0 = 0 := theorem neg_zero : -0 = 0 :=
calc -psub (pair 0 0) = psub (pair 0 0) : neg_comp 0 0 calc -(psub (pair 0 0)) = psub (pair 0 0) : neg_comp 0 0
theorem neg_neg (a : ) : -(-a) = a := theorem neg_neg (a : ) : -(-a) = a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
@ -285,7 +282,7 @@ by simp
-- add_rewrite neg_neg neg_zero -- add_rewrite neg_neg neg_zero
theorem neg_inj {a b : } (H : -a = -b) : a = b := theorem neg_inj {a b : } (H : -a = -b) : a = b :=
(by simp) ◂ congr_arg neg H iff_mp (by simp) (congr_arg neg H)
theorem neg_move {a b : } (H : -a = b) : -b = a := theorem neg_move {a b : } (H : -a = b) : -b = a :=
subst H (neg_neg a) subst H (neg_neg a)
@ -296,7 +293,7 @@ by simp
theorem pos_eq_neg {n m : } (H : n = -m) : n = 0 ∧ m = 0 := theorem pos_eq_neg {n m : } (H : n = -m) : n = 0 ∧ m = 0 :=
have H2 : ∀n : , n = psub (pair n 0), from take n : , refl (n), have H2 : ∀n : , n = psub (pair n 0), from take n : , refl (n),
have H3 : psub (pair n 0) = psub (pair 0 m), from (by simp) H, have H3 : psub (pair n 0) = psub (pair 0 m), from iff_mp (by simp) H,
have H4 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H3, have H4 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H3,
have H5 : n + m = 0, from have H5 : n + m = 0, from
calc calc
@ -329,8 +326,8 @@ or_imp_or (or_swap (proj_zero_or (rep a)))
a = psub (rep a) : symm (psub_rep a) a = psub (rep a) : symm (psub_rep a)
... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))} ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))}
... = psub (pair 0 (pr2 (rep a))) : {H2} ... = psub (pair 0 (pr2 (rep a))) : {H2}
... = -psub (pair (pr2 (rep a)) 0) : by simp ... = -(psub (pair (pr2 (rep a)) 0)) : by simp
... = -of_nat (pr2 (rep a)) : refl _)) ... = -(of_nat (pr2 (rep a))) : refl _))
opaque_hint (hiding int) opaque_hint (hiding int)
@ -342,35 +339,35 @@ or_elim (cases a)
(assume H, obtain (n : ) (H3 : a = -n), from H, subst (symm H3) (H2 n)) (assume H, obtain (n : ) (H3 : a = -n), from H, subst (symm H3) (H2 n))
---reverse equalities, rename ---reverse equalities, rename
theorem cases_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat (succ n)) := theorem cases_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
or_elim (cases a) or_elim (cases a)
(assume H : (∃n : , a = of_nat n), or_intro_left _ H) (assume H : (∃n : , a = of_nat n), or_intro_left _ H)
(assume H, (assume H,
obtain (n : ) (H2 : a = -of_nat n), from H, obtain (n : ) (H2 : a = -(of_nat n)), from H,
discriminate discriminate
(assume H3 : n = 0, (assume H3 : n = 0,
have H4 : a = of_nat 0, from have H4 : a = of_nat 0, from
calc calc
a = - of_nat n : H2 a = -(of_nat n) : H2
... = - of_nat 0 : {H3} ... = -(of_nat 0) : {H3}
... = of_nat 0 : neg_zero, ... = of_nat 0 : neg_zero,
or_intro_left _ (exists_intro 0 H4)) or_intro_left _ (exists_intro 0 H4))
(take k : , (take k : ,
assume H3 : n = succ k, assume H3 : n = succ k,
have H4 : a = - of_nat (succ k), from subst H3 H2, have H4 : a = -(of_nat (succ k)), from subst H3 H2,
or_intro_right _ (exists_intro k H4))) or_intro_right _ (exists_intro k H4)))
theorem int_by_cases_succ {P : → Prop} (a : ) theorem int_by_cases_succ {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (-of_nat (succ n))) : P a := (H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (-(of_nat (succ n)))) : P a :=
or_elim (cases_succ a) or_elim (cases_succ a)
(assume H, obtain (n : ) (H3 : a = of_nat n), from H, subst (symm H3) (H1 n)) (assume H, obtain (n : ) (H3 : a = of_nat n), from H, subst (symm H3) (H1 n))
(assume H, obtain (n : ) (H3 : a = -of_nat (succ n)), from H, subst (symm H3) (H2 n)) (assume H, obtain (n : ) (H3 : a = -(of_nat (succ n))), from H, subst (symm H3) (H2 n))
theorem of_nat_eq_neg_of_nat {n m : } (H : n = - m) : n = 0 ∧ m = 0 := theorem of_nat_eq_neg_of_nat {n m : } (H : n = - m) : n = 0 ∧ m = 0 :=
have H2 : n = psub (pair 0 m), from have H2 : n = psub (pair 0 m), from
calc calc
n = -m : H n = -m : H
... = -psub (pair m 0) : refl (-m) ... = -(psub (pair m 0)) : refl (-m)
... = psub (pair 0 m) : by simp, ... = psub (pair 0 m) : by simp,
have H3 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H2, have H3 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H2,
have H4 : n + m = 0, from have H4 : n + m = 0, from
@ -451,9 +448,6 @@ have H : dist (xa + xb) (ya + yb) ≤ dist xa ya + dist xb yb,
from dist_add_le_add_dist xa xb ya yb, from dist_add_le_add_dist xa xb ya yb,
by simp by simp
-- TODO: add this to eq
-- notation A `=` B `:` C := @eq C A B
-- TODO: note, we have to add #nat to get the right interpretation -- TODO: note, we have to add #nat to get the right interpretation
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := -- this is of_nat (n + m) theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := -- this is of_nat (n + m)
have H : ∀n : , n = psub (pair n 0), from take n : , refl n, have H : ∀n : , n = psub (pair n 0), from take n : , refl n,
@ -466,7 +460,7 @@ by simp
-- ## sub -- ## sub
definition sub (a b : ) : := a + -b definition sub (a b : ) : := a + -b
infixl `-`:65 := int.sub infixl `-` := int.sub
theorem sub_def (a b : ) : a - b = a + -b := theorem sub_def (a b : ) : a - b = a + -b :=
refl (a - b) refl (a - b)

View file

@ -27,7 +27,7 @@ inductive list (T : Type) : Type :=
nil {} : list T, nil {} : list T,
cons : T → list T → list T cons : T → list T → list T
infix `::` : 65 := cons infix `::` := cons
section section
@ -189,7 +189,7 @@ list_cases_on l
definition mem (x : T) : list T → Prop := list_rec false (fun y l H, x = y H) definition mem (x : T) : list T → Prop := list_rec false (fun y l H, x = y H)
infix `∈` : 50 := mem infix `∈` := mem
-- TODO: constructively, equality is stronger. Use that? -- TODO: constructively, equality is stronger. Use that?
theorem mem_nil (x : T) : x ∈ nil ↔ false := iff_refl _ theorem mem_nil (x : T) : x ∈ nil ↔ false := iff_refl _
@ -202,7 +202,7 @@ list_induction_on s (or_intro_right _)
assume IH : x ∈ s ++ t → x ∈ s x ∈ t, assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
assume H1 : x ∈ (y :: s) ++ t, assume H1 : x ∈ (y :: s) ++ t,
have H2 : x = y x ∈ s ++ t, from H1, have H2 : x = y x ∈ s ++ t, from H1,
have H3 : x = y x ∈ s x ∈ t, from imp_or_right H2 IH, have H3 : x = y x ∈ s x ∈ t, from or_imp_or_right H2 IH,
iff_elim_right (or_assoc _ _ _) H3) iff_elim_right (or_assoc _ _ _) H3)
theorem mem_or_imp_concat (x : T) (s t : list T) : x ∈ s x ∈ t → x ∈ s ++ t := theorem mem_or_imp_concat (x : T) (s t : list T) : x ∈ s x ∈ t → x ∈ s ++ t :=
@ -286,6 +286,6 @@ theorem nth_succ (x0 : T) (l : list T) (n : ) : nth x0 l (succ n) = nth x0 (t
end end
-- declare global notation outside the section -- declare global notation outside the section
infixl `++` : 65 := concat infixl `++` := concat
end list end list

View file

@ -2,24 +2,20 @@
--- Released under Apache 2.0 license as described in the file LICENSE. --- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn --- Author: Floris van Doorn
import logic data.num tools.tactic struc.binary
using num tactic binary eq_ops
using decidable (hiding induction_on rec_on)
using relation -- for subst_iff
-- TODO: this should go in tools, I think
namespace helper_tactics
definition apply_refl := apply @refl
tactic_hint apply_refl
end helper_tactics
using helper_tactics
-- data.nat.basic -- data.nat.basic
-- ============== -- ==============
-- --
-- Basic operations on the natural numbers. -- Basic operations on the natural numbers.
import logic data.num tools.tactic struc.binary tools.helper_tactics
using num tactic binary eq_ops
using decidable (hiding induction_on rec_on)
using relation -- for subst_iff
using helper_tactics
-- Definition of the type -- Definition of the type
-- ---------------------- -- ----------------------
@ -28,7 +24,7 @@ inductive nat : Type :=
zero : nat, zero : nat,
succ : nat → nat succ : nat → nat
notation ``:max := nat notation `` := nat
theorem nat_rec_zero {P : → Type} (x : P zero) (f : ∀m, P m → P (succ m)) : nat_rec x f zero = x theorem nat_rec_zero {P : → Type} (x : P zero) (f : ∀m, P m → P (succ m)) : nat_rec x f zero = x
@ -160,7 +156,7 @@ general m
definition add (x y : ) : := plus x y definition add (x y : ) : := plus x y
infixl `+` : 65 := add infixl `+` := add
theorem add_zero_right (n : ) : n + 0 = n theorem add_zero_right (n : ) : n + 0 = n
@ -295,7 +291,7 @@ nat_rec H1 (take n IH, (add_one n) ▸ (H2 n IH)) a
definition mul (n m : ) := nat_rec 0 (fun m x, x + n) m definition mul (n m : ) := nat_rec 0 (fun m x, x + n) m
infixl `*`:70 := mul infixl `*` := mul
theorem mul_zero_right (n:) : n * 0 = 0 theorem mul_zero_right (n:) : n * 0 = 0
@ -414,4 +410,5 @@ discriminate
-- add_rewrite mul_succ_left mul_succ_right -- add_rewrite mul_succ_left mul_succ_right
-- add_rewrite mul_comm mul_assoc mul_left_comm -- add_rewrite mul_comm mul_assoc mul_left_comm
-- add_rewrite mul_distr_right mul_distr_left -- add_rewrite mul_distr_right mul_distr_left
end nat end nat

View file

@ -1,7 +1,5 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad -- Author: Jeremy Avigad
----------------------------------------------------------------------------------------------------
import data.nat.sub import .basic .order .sub .div

View file

@ -8,15 +8,10 @@
-- This is a continuation of the development of the natural numbers, with a general way of -- This is a continuation of the development of the natural numbers, with a general way of
-- defining recursive functions, and definitions of div, mod, and gcd. -- defining recursive functions, and definitions of div, mod, and gcd.
-- TODO: replace the two uses of "not_or" by a constructive version
import logic .sub struc.relation data.prod import logic .sub struc.relation data.prod
-- TODO: show decidability of le and remove these
import logic.classes.decidable
import logic.axioms.classical
import logic.axioms.prop_decidable
import logic.axioms.funext -- is this really needed? import logic.axioms.funext -- is this really needed?
import tools.fake_simplifier import tools.fake_simplifier
using nat relation relation.iff_ops prod using nat relation relation.iff_ops prod
@ -25,7 +20,7 @@ using fake_simplifier decidable
namespace nat namespace nat
-- A general recursion principle -- A general recursion principle
-- ============================= -- -----------------------------
-- --
-- Data: -- Data:
-- --
@ -161,7 +156,7 @@ show lhs = rhs, from
lhs = 0 : if_pos H1 _ _ lhs = 0 : if_pos H1 _ _
... = rhs : symm (if_pos H1 _ _)) ... = rhs : symm (if_pos H1 _ _))
(assume H1 : ¬ (y = 0 x < y), (assume H1 : ¬ (y = 0 x < y),
have H2 : y ≠ 0 ∧ ¬ x < y, from not_or _ _ ◂ H1, have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2), have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2), have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos, have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
@ -177,7 +172,7 @@ rec_measure_spec (div_aux_rec y) (div_aux_decreasing y) x
definition idivide (x : ) (y : ) : := div_aux y x definition idivide (x : ) (y : ) : := div_aux y x
infixl `div`:70 := idivide -- copied from Isabelle infixl `div` := idivide -- copied from Isabelle
theorem div_zero (x : ) : x div 0 = 0 := theorem div_zero (x : ) : x div 0 = 0 :=
trans (div_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _) trans (div_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _)
@ -237,7 +232,7 @@ show lhs = rhs, from
lhs = x : if_pos H1 _ _ lhs = x : if_pos H1 _ _
... = rhs : symm (if_pos H1 _ _)) ... = rhs : symm (if_pos H1 _ _))
(assume H1 : ¬ (y = 0 x < y), (assume H1 : ¬ (y = 0 x < y),
have H2 : y ≠ 0 ∧ ¬ x < y, from not_or _ _ ◂ H1, have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2), have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2), have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos, have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
@ -253,7 +248,7 @@ rec_measure_spec (mod_aux_rec y) (mod_aux_decreasing y) x
definition modulo (x : ) (y : ) : := mod_aux y x definition modulo (x : ) (y : ) : := mod_aux y x
infixl `mod`:70 := modulo infixl `mod` := modulo
theorem mod_zero (x : ) : x mod 0 = x := theorem mod_zero (x : ) : x mod 0 = x :=
trans (mod_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _) trans (mod_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _)
@ -298,7 +293,7 @@ theorem mod_mul_self_right (m n : ) : (m * n) mod n = 0 :=
case_zero_pos n (by simp) case_zero_pos n (by simp)
(take n, (take n,
assume npos : n > 0, assume npos : n > 0,
(by simp) (mod_add_mul_self_right 0 m npos)) subst (by simp) (mod_add_mul_self_right 0 m npos))
-- add_rewrite mod_mul_self_right -- add_rewrite mod_mul_self_right
@ -425,19 +420,19 @@ case n (by simp)
(take n, (take n,
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1), have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
from mod_mul_mul 1 1 (succ_pos n), from mod_mul_mul 1 1 (succ_pos n),
(by simp) H) subst (by simp) H)
-- add_rewrite mod_self -- add_rewrite mod_self
theorem div_one (n : ) : n div 1 = n := theorem div_one (n : ) : n div 1 = n :=
have H : n div 1 * 1 + n mod 1 = n, from symm (div_mod_eq n 1), have H : n div 1 * 1 + n mod 1 = n, from symm (div_mod_eq n 1),
(by simp) H subst (by simp) H
-- add_rewrite div_one -- add_rewrite div_one
theorem pos_div_self {n : } (H : n > 0) : n div n = 1 := theorem pos_div_self {n : } (H : n > 0) : n div n = 1 :=
have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul 1 1 H, have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul 1 1 H,
(by simp) H1 subst (by simp) H1
-- add_rewrite pos_div_self -- add_rewrite pos_div_self
@ -446,7 +441,7 @@ have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul 1 1 H,
definition dvd (x y : ) : Prop := y mod x = 0 definition dvd (x y : ) : Prop := y mod x = 0
infix `|`:50 := dvd infix `|` := dvd
theorem dvd_iff_mod_eq_zero (x y : ) : x | y ↔ y mod x = 0 := theorem dvd_iff_mod_eq_zero (x y : ) : x | y ↔ y mod x = 0 :=
refl _ refl _

View file

@ -2,6 +2,11 @@
--- Released under Apache 2.0 license as described in the file LICENSE. --- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn --- Author: Floris van Doorn
-- data.nat.order
-- ==============
--
-- The ordering on the natural numbers
import .basic logic.classes.decidable import .basic logic.classes.decidable
import tools.fake_simplifier import tools.fake_simplifier
@ -9,27 +14,16 @@ using nat eq_ops tactic
using fake_simplifier using fake_simplifier
using decidable (decidable inl inr) using decidable (decidable inl inr)
-- TODO: move these to logic.connectives
theorem or_imp_or_left {a b c : Prop} (H1 : a b) (H2 : a → c) : c b :=
or_imp_or H1 H2 (λx, x)
theorem or_imp_or_right {a b c : Prop} (H1 : a b) (H2 : b → c) : a c :=
or_imp_or H1 (λx, x) H2
namespace nat namespace nat
-- data.nat.order
-- ==============
--
-- The ordering on the natural numbers
-- Less than or equal -- Less than or equal
-- ------------------ -- ------------------
definition le (n m : ) : Prop := exists k : nat, n + k = m definition le (n m : ) : Prop := exists k : nat, n + k = m
infix `<=`:50 := le infix `<=` := le
infix `≤`:50 := le infix `≤` := le
theorem le_intro {n m k : } (H : n + k = m) : n ≤ m := theorem le_intro {n m k : } (H : n + k = m) : n ≤ m :=
exists_intro k H exists_intro k H
@ -265,14 +259,14 @@ general n
-- ge and gt will be transparent, so we don't need to reprove theorems for le and lt for them -- ge and gt will be transparent, so we don't need to reprove theorems for le and lt for them
definition lt (n m : ) := succ n ≤ m definition lt (n m : ) := succ n ≤ m
infix `<` : 50 := lt infix `<` := lt
abbreviation ge (n m : ) := m ≤ n abbreviation ge (n m : ) := m ≤ n
infix `>=` : 50 := ge infix `>=` := ge
infix `≥` : 50 := ge infix `≥` := ge
abbreviation gt (n m : ) := m < n abbreviation gt (n m : ) := m < n
infix `>` : 50 := gt infix `>` := gt
theorem lt_def (n m : ) : (n < m) = (succ n ≤ m) := refl (n < m) theorem lt_def (n m : ) : (n < m) = (succ n ≤ m) := refl (n < m)
@ -467,6 +461,7 @@ strong_induction_on a (
show P (succ n), from show P (succ n), from
Hind n (take m, assume H1 : m ≤ n, H _ (le_imp_lt_succ H1)))) Hind n (take m, assume H1 : m ≤ n, H _ (le_imp_lt_succ H1))))
-- Positivity -- Positivity
-- --------- -- ---------
-- --
@ -474,8 +469,6 @@ strong_induction_on a (
-- ### basic -- ### basic
-- See also succ_pos.
theorem case_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y := theorem case_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y :=
case y H0 (take y', H1 _ (succ_pos _)) case y H0 (take y', H1 _ (succ_pos _))
@ -527,8 +520,6 @@ discriminate
theorem mul_pos_imp_pos_right {m n : } (H : n * m > 0) : m > 0 := theorem mul_pos_imp_pos_right {m n : } (H : n * m > 0) : m > 0 :=
mul_pos_imp_pos_left ((mul_comm n m) ▸ H) mul_pos_imp_pos_left ((mul_comm n m) ▸ H)
-- See also mul_eq_one below.
-- ### interaction of mul with le and lt -- ### interaction of mul with le and lt
theorem mul_lt_left {n m k : } (Hk : k > 0) (H : n < m) : k * n < k * m := theorem mul_lt_left {n m k : } (Hk : k > 0) (H : n < m) : k * n < k * m :=
@ -601,7 +592,4 @@ or_elim (le_or_gt n 1)
theorem mul_eq_one_right {n m : } (H : n * m = 1) : m = 1 := theorem mul_eq_one_right {n m : } (H : n * m = 1) : m = 1 :=
mul_eq_one_left ((mul_comm n m) ▸ H) mul_eq_one_left ((mul_comm n m) ▸ H)
--- theorem mul_eq_one {n m : } (H : n * m = 1) : n = 1 ∧ m = 1
--- := and_intro (mul_eq_one_left H) (mul_eq_one_right H)
end nat end nat

View file

@ -2,26 +2,26 @@
--- Released under Apache 2.0 license as described in the file LICENSE. --- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn --- Author: Floris van Doorn
-- data.nat.sub
-- ============
--
-- Subtraction on the natural numbers, as well as min, max, and distance.
import data.nat.order import data.nat.order
import tools.fake_simplifier import tools.fake_simplifier
using nat eq_ops tactic using nat eq_ops tactic
using helper_tactics using helper_tactics
using fake_simplifier using fake_simplifier
namespace nat namespace nat
-- data.nat.basic2
-- ===============
--
-- More basic operations on the natural numbers.
-- subtraction -- subtraction
-- ----------- -- -----------
definition sub (n m : ) : nat := nat_rec n (fun m x, pred x) m definition sub (n m : ) : nat := nat_rec n (fun m x, pred x) m
infixl `-` : 65 := sub infixl `-` := sub
theorem sub_zero_right (n : ) : n - 0 = n theorem sub_zero_right (n : ) : n - 0 = n
@ -491,7 +491,7 @@ by simp
-- add_rewrite dist_mul_right dist_mul_left dist_comm -- add_rewrite dist_mul_right dist_mul_left dist_comm
--needed to prove |a| * |b| = |a * b| in int --needed to prove of_nat a * of_nat b = of_nat (a * b) in int
theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
take k l : , take k l : ,

View file

@ -2,6 +2,11 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad -- Author: Leonardo de Moura, Jeremy Avigad
-- data.prod
-- =========
-- The cartesian product.
import logic.classes.inhabited logic.connectives.eq logic.classes.decidable import logic.classes.inhabited logic.connectives.eq logic.classes.decidable
using inhabited decidable using inhabited decidable
@ -9,8 +14,7 @@ using inhabited decidable
inductive prod (A B : Type) : Type := inductive prod (A B : Type) : Type :=
pair : A → B → prod A B pair : A → B → prod A B
precedence `×`:30 infixr `×` := prod
infixr × := prod
-- notation for n-ary tuples -- notation for n-ary tuples
notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t

View file

@ -10,13 +10,13 @@ using eq_ops bool
namespace set namespace set
definition set (T : Type) := T → bool definition set (T : Type) := T → bool
definition mem {T : Type} (x : T) (s : set T) := (s x) = tt definition mem {T : Type} (x : T) (s : set T) := (s x) = tt
infix `∈`:50 := mem infix `∈` := mem
section section
parameter {T : Type} parameter {T : Type}
definition empty : set T := λx, ff definition empty : set T := λx, ff
notation `∅`:max := empty notation `∅` := empty
theorem mem_empty (x : T) : ¬ (x ∈ ∅) := theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, absurd H ff_ne_tt assume H : x ∈ ∅, absurd H ff_ne_tt
@ -26,7 +26,7 @@ definition univ : set T := λx, tt
theorem mem_univ (x : T) : x ∈ univ := refl _ theorem mem_univ (x : T) : x ∈ univ := refl _
definition inter (A B : set T) : set T := λx, A x && B x definition inter (A B : set T) : set T := λx, A x && B x
infixl `∩`:70 := inter infixl `∩` := inter
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
iff_intro iff_intro
@ -43,7 +43,7 @@ theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C) :=
funext (λx, band_assoc (A x) (B x) (C x)) funext (λx, band_assoc (A x) (B x) (C x))
definition union (A B : set T) : set T := λx, A x || B x definition union (A B : set T) : set T := λx, A x || B x
infixl ``:65 := union infixl `` := union
theorem mem_union (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B) := theorem mem_union (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B) :=
iff_intro iff_intro
@ -61,4 +61,5 @@ theorem union_assoc (A B C : set T) : (A B) C = A (B C) :=
funext (λx, bor_assoc (A x) (B x) (C x)) funext (λx, bor_assoc (A x) (B x) (C x))
end end
end set end set

View file

@ -9,7 +9,7 @@ using decidable
inductive subtype {A : Type} (P : A → Prop) : Type := inductive subtype {A : Type} (P : A → Prop) : Type :=
tag : Πx : A, P x → subtype P tag : Πx : A, P x → subtype P
notation `{` binders `|` r:(scoped P, subtype P) `}` := r notation `{` binders `,` r:(scoped P, subtype P) `}` := r
namespace subtype namespace subtype
@ -18,12 +18,12 @@ section
parameter {P : A → Prop} parameter {P : A → Prop}
-- TODO: make this a coercion? -- TODO: make this a coercion?
definition elt_of (a : {x | P x}) : A := subtype_rec (λ x y, x) a definition elt_of (a : {x, P x}) : A := subtype_rec (λ x y, x) a
theorem has_property (a : {x | P x}) : P (elt_of a) := subtype_rec (λ x y, y) a theorem has_property (a : {x, P x}) : P (elt_of a) := subtype_rec (λ x y, y) a
theorem elt_of_tag (a : A) (H : P a) : elt_of (tag a H) = a := refl a theorem elt_of_tag (a : A) (H : P a) : elt_of (tag a H) = a := refl a
theorem subtype_destruct {Q : {x | P x} → Prop} (a : {x | P x}) theorem subtype_destruct {Q : {x, P x} → Prop} (a : {x, P x})
(H : ∀(x : A) (H1 : P x), Q (tag x H1)) : Q a := (H : ∀(x : A) (H1 : P x), Q (tag x H1)) : Q a :=
subtype_rec H a subtype_rec H a
@ -35,13 +35,13 @@ section
theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 := theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 :=
(show ∀(H2 : P a2), tag a1 H1 = tag a2 H2, from subst H3 (take H2, tag_irrelevant H1 H2)) H2 (show ∀(H2 : P a2), tag a1 H1 = tag a2 H2, from subst H3 (take H2, tag_irrelevant H1 H2)) H2
theorem subtype_eq {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 := theorem subtype_eq {a1 a2 : {x, P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 :=
subtype_destruct a1 (take x1 H1, subtype_destruct a2 (take x2 H2 H, tag_eq H)) subtype_destruct a1 (take x1 H1, subtype_destruct a2 (take x2 H2 H, tag_eq H))
theorem subtype_inhabited {a : A} (H : P a) : inhabited {x | P x} := theorem subtype_inhabited {a : A} (H : P a) : inhabited {x, P x} :=
inhabited_mk (tag a H) inhabited_mk (tag a H)
theorem subtype_eq_decidable (a1 a2 : {x | P x}) theorem subtype_eq_decidable (a1 a2 : {x, P x})
(H : decidable (elt_of a1 = elt_of a2)) : decidable (a1 = a2) := (H : decidable (elt_of a1 = elt_of a2)) : decidable (a1 = a2) :=
have H1 : (a1 = a2) ↔ (elt_of a1 = elt_of a2), from have H1 : (a1 = a2) ↔ (elt_of a1 = elt_of a2), from
iff_intro (assume H, subst H rfl) (assume H, subtype_eq H), iff_intro (assume H, subst H rfl) (assume H, subtype_eq H),

View file

@ -2,6 +2,11 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad -- Author: Leonardo de Moura, Jeremy Avigad
-- data.sum
-- ========
-- The sum type, aka disjoint union.
import logic.connectives.prop logic.classes.inhabited logic.classes.decidable import logic.connectives.prop logic.classes.inhabited logic.classes.decidable
using inhabited decidable using inhabited decidable
@ -13,13 +18,17 @@ inductive sum (A B : Type) : Type :=
inl : A → sum A B, inl : A → sum A B,
inr : B → sum A B inr : B → sum A B
infixr `+`:25 := sum infixr `⊎` := sum
abbreviation rec_on {A B : Type} {C : (A + B) → Type} (s : A + B) namespace sum_plus_notation
infixr `+`:25 := sum -- conflicts with notation for addition
end sum_plus_notation
abbreviation rec_on {A B : Type} {C : (A ⊎ B) → Type} (s : A ⊎ B)
(H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s := (H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s :=
sum_rec H1 H2 s sum_rec H1 H2 s
abbreviation cases_on {A B : Type} {P : (A + B) → Prop} (s : A + B) abbreviation cases_on {A B : Type} {P : (A ⊎ B) → Prop} (s : A ⊎ B)
(H1 : ∀a : A, P (inl B a)) (H2 : ∀b : B, P (inr A b)) : P s := (H1 : ∀a : A, P (inl B a)) (H2 : ∀b : B, P (inr A b)) : P s :=
sum_rec H1 H2 s sum_rec H1 H2 s
@ -47,13 +56,13 @@ have H1 : f (inr A b1), from rfl,
have H2 : f (inr A b2), from subst H H1, have H2 : f (inr A b2), from subst H H1,
H2 H2
theorem sum_inhabited_left [instance] {A B : Type} (H : inhabited A) : inhabited (A + B) := theorem sum_inhabited_left [instance] {A B : Type} (H : inhabited A) : inhabited (A B) :=
inhabited_mk (inl B (default A)) inhabited_mk (inl B (default A))
theorem sum_inhabited_right [instance] {A B : Type} (H : inhabited B) : inhabited (A + B) := theorem sum_inhabited_right [instance] {A B : Type} (H : inhabited B) : inhabited (A B) :=
inhabited_mk (inr A (default B)) inhabited_mk (inr A (default B))
theorem sum_eq_decidable [instance] {A B : Type} (s1 s2 : A + B) theorem sum_eq_decidable [instance] {A B : Type} (s1 s2 : A B)
(H1 : ∀a1 a2, decidable (inl B a1 = inl B a2)) (H1 : ∀a1 a2, decidable (inl B a1 = inl B a2))
(H2 : ∀b1 b2, decidable (inr A b1 = inr A b2)) : decidable (s1 = s2) := (H2 : ∀b1 b2, decidable (inr A b1 = inr A b2)) : decidable (s1 = s2) :=
rec_on s1 rec_on s1

View file

@ -2,8 +2,80 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad -- Author: Leonardo de Moura, Jeremy Avigad
-- General notation -- general_notation
-- ---------------- -- ================
-- General operations
-- ------------------
notation `assume` binders `,` r:(scoped f, f) := r notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r
-- Global declarations of right binding strength
-- ---------------------------------------------
-- If a module reassigns these, it will be incompatible with other modules that adhere to these
-- conventions.
-- ### Logical operations and relations
precedence `¬`:40
precedence `/\`:35 -- infixr
precedence `∧`:35 -- infixr
precedence `\/`:30 -- infixr
precedence ``:30 -- infixr
precedence `<->`:25
precedence `↔`:25
precedence `=`:50
precedence `≠`:50
precedence `rfl`:max -- shorthand for reflexivity
precedence `⁻¹`:100
precedence `⬝`:75 -- infixr
precedence `▸`:75 -- infixr
-- ### types and type constructors
precedence ``:max
precedence ``:max
precedence `⊎`:25 -- infixr
precedence `×`:30 -- infixr
-- ### arithmetic operations
precedence `+`:65 -- infixl
precedence `-`:65 -- infixl; for negation, follow by rbp 100
precedence `*`:70 -- infixl
precedence `div`:70 -- infixl
precedence `mod`:70 -- infixl
precedence `<=`:50
precedence `≤`:50
precedence `<`:50
precedence `>=`:50
precedence `≥`:50
precedence `>`:50
-- ### boolean operations
precedence `&&`:70 -- infixl
precedence `||`:65 -- infixl
precedence `!`:85 -- boolean negation, follow by rbp 100
-- ### set operations
precedence `∈`:50
precedence `∅`:max
precedence `∩`:70
precedence ``:65
-- ### other symbols
-- uncomment when inductive type syntax has changed
precedence `|`:55 -- used for absolute value, subtypes, divisibility
precedence `++`:65 -- list append
precedence `::`:65 -- list cons

View file

@ -15,7 +15,7 @@ namespace fibrant
axiom unit_fibrant : fibrant unit axiom unit_fibrant : fibrant unit
axiom nat_fibrant : fibrant nat axiom nat_fibrant : fibrant nat
axiom bool_fibrant : fibrant bool axiom bool_fibrant : fibrant bool
axiom sum_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A + B) axiom sum_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A B)
axiom prod_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A × B) axiom prod_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A × B)
axiom sigma_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) : axiom sigma_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) :
fibrant (Σx : A, B x) fibrant (Σx : A, B x)
@ -30,6 +30,6 @@ instance prod_fibrant
instance sigma_fibrant instance sigma_fibrant
instance pi_fibrant instance pi_fibrant
theorem test_fibrant : fibrant (nat × (nat + nat)) := _ theorem test_fibrant : fibrant (nat × (nat nat)) := _
end fibrant end fibrant

View file

@ -50,7 +50,7 @@ case (λ x, (¬¬x) = x)
a a
theorem not_not_elim {a : Prop} (H : ¬¬a) : a := theorem not_not_elim {a : Prop} (H : ¬¬a) : a :=
(not_not_eq a) H (not_not_eq a) H
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b := theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
or_elim (prop_complete a) or_elim (prop_complete a)
@ -125,7 +125,7 @@ propext
(assume Ha : a, or_inr (H Ha)) (assume Ha : a, or_inr (H Ha))
(assume Hna : ¬a, or_inl Hna))) (assume Hna : ¬a, or_inl Hna)))
(assume (H : ¬a b) (Ha : a), (assume (H : ¬a b) (Ha : a),
resolve_right H ((not_not_eq a)⁻¹ Ha)) resolve_right H ((not_not_eq a)⁻¹ Ha))
theorem not_implies (a b : Prop) : (¬(a → b)) = (a ∧ ¬b) := theorem not_implies (a b : Prop) : (¬(a → b)) = (a ∧ ¬b) :=
calc (¬(a → b)) = (¬(¬a b)) : {imp_or a b} calc (¬(a → b)) = (¬(¬a b)) : {imp_or a b}

View file

@ -2,29 +2,33 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad -- Authors: Leonardo de Moura, Jeremy Avigad
import logic.connectives.eq logic.connectives.quantifiers
import logic.classes.inhabited logic.classes.nonempty
import data.subtype data.sum
using subtype inhabited nonempty
-- logic.axioms.hilbert -- logic.axioms.hilbert
-- ==================== -- ====================
-- Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the -- Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the
-- constructive one). -- constructive one).
import logic.connectives.eq logic.connectives.quantifiers
import logic.classes.inhabited logic.classes.nonempty
import data.subtype data.sum
using subtype inhabited nonempty
-- the axiom
-- ---------
axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) : axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) :
{x : A | (∃x : A, P x) → P x} {x : A, (∃x : A, P x) → P x}
-- In the presence of classical logic, we could prove this from the weaker -- In the presence of classical logic, we could prove this from the weaker
-- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : { x : A | P x } -- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : {x : A, P x}
theorem nonempty_imp_exists_true {A : Type} (H : nonempty A) : ∃x : A, true := theorem nonempty_imp_exists_true {A : Type} (H : nonempty A) : ∃x : A, true :=
nonempty_elim H (take x, exists_intro x trivial) nonempty_elim H (take x, exists_intro x trivial)
theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A := theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A :=
let u : {x : A | (∃x : A, true) → true} := strong_indefinite_description (λa, true) H in let u : {x : A, (∃x : A, true) → true} := strong_indefinite_description (λa, true) H in
inhabited_mk (elt_of u) inhabited_mk (elt_of u)
theorem exists_imp_inhabited {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A := theorem exists_imp_inhabited {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A :=
@ -35,13 +39,13 @@ nonempty_imp_inhabited (obtain w Hw, from H, nonempty_intro w)
-- ---------------------------- -- ----------------------------
definition epsilon {A : Type} {H : nonempty A} (P : A → Prop) : A := definition epsilon {A : Type} {H : nonempty A} (P : A → Prop) : A :=
let u : {x : A | (∃y, P y) → P x} := let u : {x : A, (∃y, P y) → P x} :=
strong_indefinite_description P H in strong_indefinite_description P H in
elt_of u elt_of u
theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) : theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) :
P (@epsilon A H P) := P (@epsilon A H P) :=
let u : {x : A | (∃y, P y) → P x} := let u : {x : A, (∃y, P y) → P x} :=
strong_indefinite_description P H in strong_indefinite_description P H in
has_property u Hex has_property u Hex

View file

@ -22,7 +22,7 @@ inductive true : Prop :=
trivial : true trivial : true
abbreviation not (a : Prop) := a → false abbreviation not (a : Prop) := a → false
prefix `¬`:40 := not prefix `¬` := not
-- not -- not
@ -65,8 +65,8 @@ assume Hnb Ha, Hnb (Hab Ha)
inductive and (a b : Prop) : Prop := inductive and (a b : Prop) : Prop :=
and_intro : a → b → and a b and_intro : a → b → and a b
infixr `/\`:35 := and infixr `/\` := and
infixr `∧`:35 := and infixr `∧` := and
theorem and_elim {a b c : Prop} (H1 : a ∧ b) (H2 : a → b → c) : c := theorem and_elim {a b c : Prop} (H1 : a ∧ b) (H2 : a → b → c) : c :=
and_rec H2 H1 and_rec H2 H1
@ -103,8 +103,8 @@ inductive or (a b : Prop) : Prop :=
or_intro_left : a → or a b, or_intro_left : a → or a b,
or_intro_right : b → or a b or_intro_right : b → or a b
infixr `\/`:30 := or infixr `\/` := or
infixr ``:30 := or infixr `` := or
theorem or_inl {a b : Prop} (Ha : a) : a b := or_intro_left b Ha theorem or_inl {a b : Prop} (Ha : a) : a b := or_intro_left b Ha
theorem or_inr {a b : Prop} (Hb : b) : a b := or_intro_right a Hb theorem or_inr {a b : Prop} (Hb : b) : a b := or_intro_right a Hb
@ -131,12 +131,12 @@ or_elim H1
(assume Ha : a, or_inl (H2 Ha)) (assume Ha : a, or_inl (H2 Ha))
(assume Hb : b, or_inr (H3 Hb)) (assume Hb : b, or_inr (H3 Hb))
theorem imp_or_left {a b c : Prop} (H1 : a c) (H : a → b) : b c := theorem or_imp_or_left {a b c : Prop} (H1 : a c) (H : a → b) : b c :=
or_elim H1 or_elim H1
(assume H2 : a, or_inl (H H2)) (assume H2 : a, or_inl (H H2))
(assume H2 : c, or_inr H2) (assume H2 : c, or_inr H2)
theorem imp_or_right {a b c : Prop} (H1 : c a) (H : a → b) : c b := theorem or_imp_or_right {a b c : Prop} (H1 : c a) (H : a → b) : c b :=
or_elim H1 or_elim H1
(assume H2 : c, or_inl H2) (assume H2 : c, or_inl H2)
(assume H2 : a, or_inr (H H2)) (assume H2 : a, or_inr (H H2))
@ -146,8 +146,8 @@ or_elim H1
-- --- -- ---
definition iff (a b : Prop) := (a → b) ∧ (b → a) definition iff (a b : Prop) := (a → b) ∧ (b → a)
infix `<->`:25 := iff infix `<->` := iff
infix `↔`:25 := iff infix `↔` := iff
theorem iff_intro {a b : Prop} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2 theorem iff_intro {a b : Prop} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2

View file

@ -1,21 +1,23 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad -- Authors: Leonardo de Moura, Jeremy Avigad
----------------------------------------------------------------------------------------------------
-- logic.connectives.eq
-- ====================
-- Equality.
import .basic import .basic
-- eq -- eq
-- -- -- --
inductive eq {A : Type} (a : A) : A → Prop := inductive eq {A : Type} (a : A) : A → Prop :=
refl : eq a a refl : eq a a
infix `=`:50 := eq infix `=` := eq
notation `rfl` := refl _
-- TODO: try this out -- shorthand for "refl _"
notation `rfl`:max := refl _
theorem eq_id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (refl a) := rfl theorem eq_id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (refl a) := rfl
@ -48,16 +50,17 @@ theorem eq_rec_on_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) :
theorem eq_rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec b H = b := theorem eq_rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec b H = b :=
eq_rec_on_id H b eq_rec_on_id H b
theorem eq_rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c) (u : P a) : theorem eq_rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c)
(u : P a) :
eq_rec_on H2 (eq_rec_on H1 u) = eq_rec_on (trans H1 H2) u := eq_rec_on H2 (eq_rec_on H1 u) = eq_rec_on (trans H1 H2) u :=
(show ∀(H2 : b = c), eq_rec_on H2 (eq_rec_on H1 u) = eq_rec_on (trans H1 H2) u, (show ∀(H2 : b = c), eq_rec_on H2 (eq_rec_on H1 u) = eq_rec_on (trans H1 H2) u,
from eq_rec_on H2 (take (H2 : b = b), eq_rec_on_id H2 _)) from eq_rec_on H2 (take (H2 : b = b), eq_rec_on_id H2 _))
H2 H2
namespace eq_ops namespace eq_ops
postfix `⁻¹`:100 := symm postfix `⁻¹` := symm
infixr `⬝`:75 := trans infixr `⬝` := trans
infixr `▸`:75 := subst infixr `▸` := subst
end eq_ops end eq_ops
using eq_ops using eq_ops
@ -67,7 +70,8 @@ H ▸ refl (f a)
theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b :=
H ▸ refl (f a) H ▸ refl (f a)
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b := theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) :
f a = g b :=
H1 ▸ H2 ▸ refl (f a) H1 ▸ H2 ▸ refl (f a)
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
@ -79,26 +83,23 @@ congr_arg not H
theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b := theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b :=
H1 ▸ H2 H1 ▸ H2
infixl `<|`:100 := eqmp
infixl `◂`:100 := eqmp
theorem eqmpr {a b : Prop} (H1 : a = b) (H2 : b) : a := theorem eqmpr {a b : Prop} (H1 : a = b) (H2 : b) : a :=
H1⁻¹ H2 H1⁻¹ ▸ H2
theorem eqt_elim {a : Prop} (H : a = true) : a := theorem eqt_elim {a : Prop} (H : a = true) : a :=
H⁻¹ trivial H⁻¹ trivial
theorem eqf_elim {a : Prop} (H : a = false) : ¬a := theorem eqf_elim {a : Prop} (H : a = false) : ¬a :=
assume Ha : a, H Ha assume Ha : a, H Ha
theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c := theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c :=
assume Ha, H2 (H1 Ha) assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Prop} (H1 : a → b) (H2 : b = c) : a → c := theorem imp_eq_trans {a b c : Prop} (H1 : a → b) (H2 : b = c) : a → c :=
assume Ha, H2 (H1 Ha) assume Ha, H2 (H1 Ha)
theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c := theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c :=
assume Ha, H2 (H1 Ha) assume Ha, H2 (H1 Ha)
theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b := theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b :=
iff_intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) iff_intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
@ -108,7 +109,7 @@ iff_intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
-- -- -- --
definition ne [inline] {A : Type} (a b : A) := ¬(a = b) definition ne [inline] {A : Type} (a b : A) := ¬(a = b)
infix `≠`:50 := ne infix `≠` := ne
theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b := H theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b := H

View file

@ -0,0 +1,43 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jeremy Avigad
-- logic.connectives.identities
-- ============================
-- Useful logical identities. In the absence of propositional extensionality, some of the
-- calculations use the type class support provided by logic.connectives.instances
import logic.connectives.instances
using relation
-- TODO: delete when calc bug is fixed
calc_subst subst_iff
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or_assoc _ _ _
... ↔ a (c b) : {or_comm b c}
... ↔ (a c) b : iff_symm (or_assoc _ _ _)
theorem or_left_comm (a b c : Prop) : a (b c)↔ b (a c) :=
calc
a (b c) ↔ (a b) c : iff_symm (or_assoc _ _ _)
... ↔ (b a) c : {or_comm a b}
... ↔ b (a c) : or_assoc _ _ _
theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
calc
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and_assoc _ _ _
... ↔ a ∧ (c ∧ b) : {and_comm b c}
... ↔ (a ∧ c) ∧ b : iff_symm (and_assoc _ _ _)
theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
calc
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff_symm (and_assoc _ _ _)
... ↔ (b ∧ a) ∧ c : {and_comm a b}
... ↔ b ∧ (a ∧ c) : and_assoc _ _ _
-- TODO: delete when calc bug is fixed
calc_subst subst

View file

@ -4,3 +4,4 @@ tools
Various additional tools. Various additional tools.
* [tactic](tactic.lean) : reflected syntax for tactics * [tactic](tactic.lean) : reflected syntax for tactics
* [helper_tactics](helper_tactics.lean) : useful tactics

View file

@ -65,23 +65,23 @@ theorem not_zero_add_right [instance] (x y : nat) (H : not_zero y) : not_zero (x
theorem not_zero_succ [instance] (x : nat) : not_zero (succ x) theorem not_zero_succ [instance] (x : nat) : not_zero (succ x)
:= not_zero_intro (not_is_zero_succ x) := not_zero_intro (not_is_zero_succ x)
variable div : Π (x y : nat) {H : not_zero y}, nat variable dvd : Π (x y : nat) {H : not_zero y}, nat
variables a b : nat variables a b : nat
set_option pp.implicit true set_option pp.implicit true
opaque_hint (hiding [module]) opaque_hint (hiding [module])
check div a (succ b) check dvd a (succ b)
check (λ H : not_zero b, div a b) check (λ H : not_zero b, dvd a b)
check (succ zero) check (succ zero)
check a + (succ zero) check a + (succ zero)
check div a (a + (succ b)) check dvd a (a + (succ b))
opaque_hint (exposing [module]) opaque_hint (exposing [module])
check div a (a + (succ b)) check dvd a (a + (succ b))
opaque_hint (hiding add) opaque_hint (hiding add)
check div a (a + (succ b)) check dvd a (a + (succ b))
opaque_hint (exposing add) opaque_hint (exposing add)
check div a (a + (succ b)) check dvd a (a + (succ b))

View file

@ -592,7 +592,7 @@ theorem le_ne_imp_succ_le {n m : } (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤
:= resolve_left (le_imp_succ_le_or_eq H1) H2 := resolve_left (le_imp_succ_le_or_eq H1) H2
theorem le_succ_imp_le_or_eq {n m : } (H : n ≤ succ m) : n ≤ m n = succ m theorem le_succ_imp_le_or_eq {n m : } (H : n ≤ succ m) : n ≤ m n = succ m
:= imp_or_left (le_imp_succ_le_or_eq H) := or_imp_or_left (le_imp_succ_le_or_eq H)
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2) (take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
theorem succ_le_imp_le_and_ne {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠ m theorem succ_le_imp_le_and_ne {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
@ -912,7 +912,7 @@ theorem case_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀y, y > 0
:= case y H0 (take y', H1 _ (succ_pos _)) := case y H0 (take y', H1 _ (succ_pos _))
theorem zero_or_pos (n : ) : n = 0 n > 0 theorem zero_or_pos (n : ) : n = 0 n > 0
:= imp_or_left (or_swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H) := or_imp_or_left (or_swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H)
theorem succ_imp_pos {n m : } (H : n = succ m) : n > 0 theorem succ_imp_pos {n m : } (H : n = succ m) : n > 0
:= subst (symm H) (succ_pos m) := subst (symm H) (succ_pos m)