fix(theories/analysis): make variables implicit in continuous_at_intro
This commit is contained in:
parent
2c56a2c48b
commit
4a41e78124
2 changed files with 9 additions and 25 deletions
|
@ -631,7 +631,7 @@ open topology set
|
|||
--topology.continuous_at f x
|
||||
|
||||
-- the ε - δ definition of continuity is equivalent to the topological definition
|
||||
theorem continuous_at_intro (f : M → N) (x : M)
|
||||
theorem continuous_at_intro {f : M → N} {x : M}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at f x :=
|
||||
begin
|
||||
|
@ -687,7 +687,7 @@ theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
|||
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||||
continuous_at f x :=
|
||||
continuous_at_intro _ _
|
||||
continuous_at_intro
|
||||
(take ε, suppose ε > 0,
|
||||
obtain δ Hδ, from Hf this,
|
||||
exists.intro δ (and.intro
|
||||
|
|
|
@ -332,7 +332,6 @@ proposition abs_sub_converges_to_seq_of_converges_to_seq (HX : X ⟶ x in ℕ) :
|
|||
|
||||
proposition mul_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
||||
(λ n, X n * Y n) ⟶ x * y in ℕ :=
|
||||
begin
|
||||
have Hbd : ∃ K : ℝ, ∀ n : ℕ, abs (X n) ≤ K, begin
|
||||
cases bounded_of_converges_seq HX with K HK,
|
||||
existsi K + abs x,
|
||||
|
@ -343,8 +342,8 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
|||
apply le_abs_self,
|
||||
assumption
|
||||
end,
|
||||
cases Hbd with K HK,
|
||||
have Habsle : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
|
||||
obtain K HK, from Hbd,
|
||||
have Habsle [visible] : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
|
||||
intro,
|
||||
have Heq : X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y), by
|
||||
rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
|
||||
|
@ -359,7 +358,7 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
|||
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
|
||||
apply le.refl
|
||||
end,
|
||||
have Hdifflim : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in ℕ, begin
|
||||
have Hdifflim [visible] : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in ℕ, begin
|
||||
apply converges_to_seq_squeeze,
|
||||
rotate 2,
|
||||
intro, apply abs_nonneg,
|
||||
|
@ -376,9 +375,8 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
|||
apply abs_sub_converges_to_seq_of_converges_to_seq,
|
||||
exact HX
|
||||
end,
|
||||
apply converges_to_seq_of_abs_sub_converges_to_seq,
|
||||
apply Hdifflim
|
||||
end
|
||||
converges_to_seq_of_abs_sub_converges_to_seq Hdifflim
|
||||
|
||||
|
||||
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
|
||||
|
||||
|
@ -553,13 +551,13 @@ section continuous
|
|||
theorem continuous_real_elim {f : ℝ → ℝ} (H : continuous f) :
|
||||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε :=
|
||||
H
|
||||
take x, continuous_at_elim (H x)
|
||||
|
||||
theorem continuous_real_intro {f : ℝ → ℝ}
|
||||
(H : ∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||||
continuous f :=
|
||||
H
|
||||
take x, continuous_at_intro (H x)
|
||||
|
||||
theorem pos_on_nbhd_of_cts_of_pos {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ} (Hb : f b > 0) :
|
||||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
|
||||
|
@ -635,17 +633,3 @@ theorem continuous_mul_of_continuous {f g : ℝ → ℝ} (Hconf : continuous f)
|
|||
end
|
||||
|
||||
end continuous
|
||||
|
||||
/-
|
||||
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
|
||||
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=
|
||||
eq_of_forall_dist_le
|
||||
(take ε, suppose ε > 0,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||
obtain δ₁ [(δ₁pos : δ₁ > 0) (Hδ₁ : ∀ x', x ≠ x' ∧ dist x x' < δ₁ → dist (f x') y₁ < ε / 2)],
|
||||
from H₁ e2pos,
|
||||
obtain δ₂ [(δ₂pos : δ₂ > 0) (Hδ₂ : ∀ x', x ≠ x' ∧ dist x x' < δ₂ → dist (f x') y₂ < ε / 2)],
|
||||
from H₂ e2pos,
|
||||
let δ := min δ₁ δ₂ in
|
||||
have δ > 0, from lt_min δ₁pos δ₂pos,
|
||||
-/
|
||||
|
|
Loading…
Reference in a new issue