fix(theories/analysis): make variables implicit in continuous_at_intro

This commit is contained in:
Rob Lewis 2016-02-09 19:10:49 -05:00 committed by Leonardo de Moura
parent 2c56a2c48b
commit 4a41e78124
2 changed files with 9 additions and 25 deletions

View file

@ -631,7 +631,7 @@ open topology set
--topology.continuous_at f x
-- the ε - δ definition of continuity is equivalent to the topological definition
theorem continuous_at_intro (f : M → N) (x : M)
theorem continuous_at_intro {f : M → N} {x : M}
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
continuous_at f x :=
begin
@ -687,7 +687,7 @@ theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
continuous_at f x :=
continuous_at_intro _ _
continuous_at_intro
(take ε, suppose ε > 0,
obtain δ Hδ, from Hf this,
exists.intro δ (and.intro

View file

@ -332,7 +332,6 @@ proposition abs_sub_converges_to_seq_of_converges_to_seq (HX : X ⟶ x in ) :
proposition mul_converges_to_seq (HX : X ⟶ x in ) (HY : Y ⟶ y in ) :
(λ n, X n * Y n) ⟶ x * y in :=
begin
have Hbd : ∃ K : , ∀ n : , abs (X n) ≤ K, begin
cases bounded_of_converges_seq HX with K HK,
existsi K + abs x,
@ -343,8 +342,8 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ) (HY : Y ⟶ y in ) :
apply le_abs_self,
assumption
end,
cases Hbd with K HK,
have Habsle : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
obtain K HK, from Hbd,
have Habsle [visible] : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
intro,
have Heq : X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y), by
rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
@ -359,7 +358,7 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ) (HY : Y ⟶ y in ) :
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
apply le.refl
end,
have Hdifflim : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in , begin
have Hdifflim [visible] : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in , begin
apply converges_to_seq_squeeze,
rotate 2,
intro, apply abs_nonneg,
@ -376,9 +375,8 @@ proposition mul_converges_to_seq (HX : X ⟶ x in ) (HY : Y ⟶ y in ) :
apply abs_sub_converges_to_seq_of_converges_to_seq,
exact HX
end,
apply converges_to_seq_of_abs_sub_converges_to_seq,
apply Hdifflim
end
converges_to_seq_of_abs_sub_converges_to_seq Hdifflim
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
@ -553,13 +551,13 @@ section continuous
theorem continuous_real_elim {f : } (H : continuous f) :
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε :=
H
take x, continuous_at_elim (H x)
theorem continuous_real_intro {f : }
(H : ∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous f :=
H
take x, continuous_at_intro (H x)
theorem pos_on_nbhd_of_cts_of_pos {f : } (Hf : continuous f) {b : } (Hb : f b > 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
@ -635,17 +633,3 @@ theorem continuous_mul_of_continuous {f g : } (Hconf : continuous f)
end
end continuous
/-
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=
eq_of_forall_dist_le
(take ε, suppose ε > 0,
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
obtain δ₁ [(δ₁pos : δ₁ > 0) (Hδ₁ : ∀ x', x ≠ x' ∧ dist x x' < δ₁ → dist (f x') y₁ < ε / 2)],
from H₁ e2pos,
obtain δ₂ [(δ₂pos : δ₂ > 0) (Hδ₂ : ∀ x', x ≠ x' ∧ dist x x' < δ₂ → dist (f x') y₂ < ε / 2)],
from H₂ e2pos,
let δ := min δ₁ δ₂ in
have δ > 0, from lt_min δ₁pos δ₂pos,
-/