feat(library/data/{int,rat,real}/bigops): add bigops for int, rat, real

Because migrate does not handle parameters, we have to migrate by hand.
This commit is contained in:
Jeremy Avigad 2015-08-08 17:18:41 -04:00
parent f97298394b
commit 4b39400439
10 changed files with 504 additions and 5 deletions

View file

@ -0,0 +1,165 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite products and sums on the integers.
-/
import data.int.order algebra.group_bigops algebra.group_set_bigops
open list
namespace int
open [classes] algebra
local attribute int.decidable_linear_ordered_comm_ring [instance]
variables {A : Type} [deceqA : decidable_eq A]
/- Prodl -/
definition Prodl (l : list A) (f : A → int) : int := algebra.Prodl l f
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
theorem Prodl_nil (f : A → int) : Prodl [] f = 1 := algebra.Prodl_nil f
theorem Prodl_cons (f : A → int) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
algebra.Prodl_cons f a l
theorem Prodl_append (l₁ l₂ : list A) (f : A → int) : Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f :=
algebra.Prodl_append l₁ l₂ f
theorem Prodl_mul (l : list A) (f g : A → int) :
Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := algebra.Prodl_mul l f g
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → int) {a : A} {l : list A} (H : a ∈ l) :
Prodl (insert a l) f = Prodl l f := algebra.Prodl_insert_of_mem f H
theorem Prodl_insert_of_not_mem (f : A → int) {a : A} {l : list A} (H : a ∉ l) :
Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H
theorem Prodl_union {l₁ l₂ : list A} (f : A → int) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d
theorem Prodl_one (l : list A) : Prodl l (λ x, 1) = 1 := algebra.Prodl_one l
end deceqA
/- Prod over finset -/
namespace finset
open finset
definition Prod (s : finset A) (f : A → int) : int := algebra.finset.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → int) : Prod ∅ f = 1 := algebra.finset.Prod_empty f
theorem Prod_mul (s : finset A) (f g : A → int) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.finset.Prod_mul s f g
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → int) {a : A} {s : finset A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.finset.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → int) {a : A} {s : finset A} (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.finset.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → int) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.finset.Prod_union f disj
theorem Prod_ext {s : finset A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.finset.Prod_ext H
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = 1 := algebra.finset.Prod_one s
end deceqA
end finset
/- Prod over set -/
namespace set
open set
noncomputable definition Prod (s : set A) (f : A → int) : int := algebra.set.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → int) : Prod ∅ f = 1 := algebra.set.Prod_empty f
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → int) : Prod s f = 1 :=
algebra.set.Prod_of_not_finite nfins f
theorem Prod_mul (s : set A) (f g : A → int) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.set.Prod_mul s f g
theorem Prod_insert_of_mem (f : A → int) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.set.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → int) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.set.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → int) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.set.Prod_union f disj
theorem Prod_ext {s : set A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.set.Prod_ext H
theorem Prod_one (s : set A) : Prod s (λ x, 1) = 1 := algebra.set.Prod_one s
end set
/- Suml -/
definition Suml (l : list A) (f : A → int) : int := algebra.Suml l f
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → int) : Suml [] f = 0 := algebra.Suml_nil f
theorem Suml_cons (f : A → int) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
algebra.Suml_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → int) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
algebra.Suml_append l₁ l₂ f
theorem Suml_add (l : list A) (f g : A → int) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
algebra.Suml_add l f g
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → int) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := algebra.Suml_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → int) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → int) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = 0 := algebra.Suml_zero l
end deceqA
/- Sum over a finset -/
namespace finset
open finset
definition Sum (s : finset A) (f : A → int) : int := algebra.finset.Sum s f
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → int) : Sum ∅ f = 0 := algebra.finset.Sum_empty f
theorem Sum_add (s : finset A) (f g : A → int) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.finset.Sum_add s f g
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → int) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.finset.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → int) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.finset.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → int) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.finset.Sum_union f disj
theorem Sum_ext {s : finset A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.finset.Sum_ext H
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = 0 := algebra.finset.Sum_zero s
end deceqA
end finset
/- Sum over a set -/
namespace set
open set
noncomputable definition Sum (s : set A) (f : A → int) : int := algebra.set.Sum s f
notation `∏` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → int) : Sum ∅ f = 0 := algebra.set.Sum_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → int) : Sum s f = 0 :=
algebra.set.Sum_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → int) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.set.Sum_add s f g
theorem Sum_insert_of_mem (f : A → int) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.set.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → int) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.set.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → int) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.set.Sum_union f disj
theorem Sum_ext {s : set A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.set.Sum_ext H
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = 0 := algebra.set.Sum_zero s
end set
end int

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad Author: Jeremy Avigad
-/ -/
import .basic .order .div .power .gcd import .basic .order .div .power .gcd .bigops

View file

@ -8,3 +8,4 @@ The integers.
* [div](div.lean) : div and mod * [div](div.lean) : div and mod
* [power](power.lean) * [power](power.lean)
* [gcd](gcd.lean) : gcd, lcm, and coprime * [gcd](gcd.lean) : gcd, lcm, and coprime
* [bigops](bigops.lean)

View file

@ -0,0 +1,165 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite products and sums on the rationals.
-/
import data.rat.order algebra.group_bigops algebra.group_set_bigops
open list
namespace rat
open [classes] algebra
local attribute rat.discrete_linear_ordered_field [instance]
variables {A : Type} [deceqA : decidable_eq A]
/- Prodl -/
definition Prodl (l : list A) (f : A → rat) : rat := algebra.Prodl l f
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
theorem Prodl_nil (f : A → rat) : Prodl [] f = 1 := algebra.Prodl_nil f
theorem Prodl_cons (f : A → rat) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
algebra.Prodl_cons f a l
theorem Prodl_append (l₁ l₂ : list A) (f : A → rat) : Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f :=
algebra.Prodl_append l₁ l₂ f
theorem Prodl_mul (l : list A) (f g : A → rat) :
Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := algebra.Prodl_mul l f g
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → rat) {a : A} {l : list A} (H : a ∈ l) :
Prodl (insert a l) f = Prodl l f := algebra.Prodl_insert_of_mem f H
theorem Prodl_insert_of_not_mem (f : A → rat) {a : A} {l : list A} (H : a ∉ l) :
Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H
theorem Prodl_union {l₁ l₂ : list A} (f : A → rat) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d
theorem Prodl_one (l : list A) : Prodl l (λ x, 1) = 1 := algebra.Prodl_one l
end deceqA
/- Prod over finset -/
namespace finset
open finset
definition Prod (s : finset A) (f : A → rat) : rat := algebra.finset.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → rat) : Prod ∅ f = 1 := algebra.finset.Prod_empty f
theorem Prod_mul (s : finset A) (f g : A → rat) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.finset.Prod_mul s f g
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → rat) {a : A} {s : finset A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.finset.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → rat) {a : A} {s : finset A} (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.finset.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → rat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.finset.Prod_union f disj
theorem Prod_ext {s : finset A} {f g : A → rat} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.finset.Prod_ext H
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = 1 := algebra.finset.Prod_one s
end deceqA
end finset
/- Prod over set -/
namespace set
open set
noncomputable definition Prod (s : set A) (f : A → rat) : rat := algebra.set.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → rat) : Prod ∅ f = 1 := algebra.set.Prod_empty f
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → rat) : Prod s f = 1 :=
algebra.set.Prod_of_not_finite nfins f
theorem Prod_mul (s : set A) (f g : A → rat) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.set.Prod_mul s f g
theorem Prod_insert_of_mem (f : A → rat) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.set.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → rat) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.set.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → rat) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.set.Prod_union f disj
theorem Prod_ext {s : set A} {f g : A → rat} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.set.Prod_ext H
theorem Prod_one (s : set A) : Prod s (λ x, 1) = 1 := algebra.set.Prod_one s
end set
/- Suml -/
definition Suml (l : list A) (f : A → rat) : rat := algebra.Suml l f
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → rat) : Suml [] f = 0 := algebra.Suml_nil f
theorem Suml_cons (f : A → rat) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
algebra.Suml_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → rat) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
algebra.Suml_append l₁ l₂ f
theorem Suml_add (l : list A) (f g : A → rat) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
algebra.Suml_add l f g
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → rat) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := algebra.Suml_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → rat) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → rat) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = 0 := algebra.Suml_zero l
end deceqA
/- Sum over a finset -/
namespace finset
open finset
definition Sum (s : finset A) (f : A → rat) : rat := algebra.finset.Sum s f
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → rat) : Sum ∅ f = 0 := algebra.finset.Sum_empty f
theorem Sum_add (s : finset A) (f g : A → rat) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.finset.Sum_add s f g
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → rat) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.finset.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → rat) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.finset.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → rat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.finset.Sum_union f disj
theorem Sum_ext {s : finset A} {f g : A → rat} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.finset.Sum_ext H
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = 0 := algebra.finset.Sum_zero s
end deceqA
end finset
/- Sum over a set -/
namespace set
open set
noncomputable definition Sum (s : set A) (f : A → rat) : rat := algebra.set.Sum s f
notation `∏` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → rat) : Sum ∅ f = 0 := algebra.set.Sum_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → rat) : Sum s f = 0 :=
algebra.set.Sum_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → rat) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.set.Sum_add s f g
theorem Sum_insert_of_mem (f : A → rat) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.set.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → rat) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.set.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → rat) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.set.Sum_union f disj
theorem Sum_ext {s : set A} {f g : A → rat} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.set.Sum_ext H
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = 0 := algebra.set.Sum_zero s
end set
end rat

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad Author: Jeremy Avigad
-/ -/
import .basic .order import .basic .order .bigops

View file

@ -5,3 +5,4 @@ The rational numbers.
* [basic](basic.lean) : the rationals as a field * [basic](basic.lean) : the rationals as a field
* [order](order.lean) : the order relations and the sign function * [order](order.lean) : the order relations and the sign function
* [bigops](bigops.lean)

View file

@ -0,0 +1,167 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite products and sums on the reals.
-/
import data.real.division algebra.group_bigops algebra.group_set_bigops
open list
namespace real
open [classes] algebra
local attribute real.ordered_ring [instance]
local attribute real.comm_ring [instance]
variables {A : Type} [deceqA : decidable_eq A]
/- Prodl -/
definition Prodl (l : list A) (f : A → real) : real := algebra.Prodl l f
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
theorem Prodl_nil (f : A → real) : Prodl [] f = 1 := algebra.Prodl_nil f
theorem Prodl_cons (f : A → real) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
algebra.Prodl_cons f a l
theorem Prodl_append (l₁ l₂ : list A) (f : A → real) : Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f :=
algebra.Prodl_append l₁ l₂ f
theorem Prodl_mul (l : list A) (f g : A → real) :
Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := algebra.Prodl_mul l f g
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → real) {a : A} {l : list A} (H : a ∈ l) :
Prodl (insert a l) f = Prodl l f := algebra.Prodl_insert_of_mem f H
theorem Prodl_insert_of_not_mem (f : A → real) {a : A} {l : list A} (H : a ∉ l) :
Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H
theorem Prodl_union {l₁ l₂ : list A} (f : A → real) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d
theorem Prodl_one (l : list A) : Prodl l (λ x, 1) = 1 := algebra.Prodl_one l
end deceqA
/- Prod over finset -/
namespace finset
open finset
definition Prod (s : finset A) (f : A → real) : real := algebra.finset.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → real) : Prod ∅ f = 1 := algebra.finset.Prod_empty f
theorem Prod_mul (s : finset A) (f g : A → real) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.finset.Prod_mul s f g
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → real) {a : A} {s : finset A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.finset.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → real) {a : A} {s : finset A} (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.finset.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → real) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.finset.Prod_union f disj
theorem Prod_ext {s : finset A} {f g : A → real} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.finset.Prod_ext H
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = 1 := algebra.finset.Prod_one s
end deceqA
end finset
/- Prod over set -/
namespace set
open set
noncomputable definition Prod (s : set A) (f : A → real) : real := algebra.set.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → real) : Prod ∅ f = 1 := algebra.set.Prod_empty f
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → real) : Prod s f = 1 :=
algebra.set.Prod_of_not_finite nfins f
theorem Prod_mul (s : set A) (f g : A → real) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.set.Prod_mul s f g
theorem Prod_insert_of_mem (f : A → real) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.set.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → real) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.set.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → real) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.set.Prod_union f disj
theorem Prod_ext {s : set A} {f g : A → real} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.set.Prod_ext H
theorem Prod_one (s : set A) : Prod s (λ x, 1) = 1 := algebra.set.Prod_one s
end set
/- Suml -/
definition Suml (l : list A) (f : A → real) : real := algebra.Suml l f
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → real) : Suml [] f = 0 := algebra.Suml_nil f
theorem Suml_cons (f : A → real) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
algebra.Suml_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → real) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
algebra.Suml_append l₁ l₂ f
theorem Suml_add (l : list A) (f g : A → real) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
algebra.Suml_add l f g
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → real) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := algebra.Suml_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → real) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → real) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = 0 := algebra.Suml_zero l
end deceqA
/- Sum over a finset -/
namespace finset
open finset
definition Sum (s : finset A) (f : A → real) : real := algebra.finset.Sum s f
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → real) : Sum ∅ f = 0 := algebra.finset.Sum_empty f
theorem Sum_add (s : finset A) (f g : A → real) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.finset.Sum_add s f g
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → real) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.finset.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → real) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.finset.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → real) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.finset.Sum_union f disj
theorem Sum_ext {s : finset A} {f g : A → real} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.finset.Sum_ext H
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = 0 := algebra.finset.Sum_zero s
end deceqA
end finset
/- Sum over a set -/
namespace set
open set
noncomputable definition Sum (s : set A) (f : A → real) : real := algebra.set.Sum s f
notation `∏` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → real) : Sum ∅ f = 0 := algebra.set.Sum_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → real) : Sum s f = 0 :=
algebra.set.Sum_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → real) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.set.Sum_add s f g
theorem Sum_insert_of_mem (f : A → real) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.set.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → real) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.set.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → real) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.set.Sum_union f disj
theorem Sum_ext {s : set A} {f g : A → real} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.set.Sum_ext H
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = 0 := algebra.set.Sum_zero s
end set
end real

View file

@ -1011,7 +1011,6 @@ theorem under_lowest_bound : ∀ y : , ub y → sup_under ≤ y :=
theorem under_over_equiv : p_under_seq ≡ p_over_seq := theorem under_over_equiv : p_under_seq ≡ p_over_seq :=
begin begin
rewrite ↑equiv,
intros, intros,
apply rat.le.trans, apply rat.le.trans,
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq, have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis Author: Robert Y. Lewis
-/ -/
import .basic .order .division .complete import .basic .order .division .complete .bigops

View file

@ -7,3 +7,4 @@ The real numbers: classically, as a quotient type; constructively, as a setoid.
* [order](order.lean) : the reals as an ordered ring (constructive) * [order](order.lean) : the reals as an ordered ring (constructive)
* [division](division.lean) : the reals as a discrete linear ordered field (classical) * [division](division.lean) : the reals as a discrete linear ordered field (classical)
* [complete](complete.lean) : the reals are Cauchy complete (classical) * [complete](complete.lean) : the reals are Cauchy complete (classical)
* [bigops](bigops.lean)