feat(library/data/finset/basic.lean): add lots of theorems, do minor renaming
This commit is contained in:
parent
a54a98c1ec
commit
4db4c86d37
1 changed files with 188 additions and 39 deletions
|
@ -1,11 +1,9 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
Module: data.finset
|
||||
Author: Leonardo de Moura
|
||||
|
||||
Finite sets
|
||||
Finite sets.
|
||||
-/
|
||||
import data.fintype data.nat data.list.perm data.subtype algebra.binary
|
||||
open nat quot list subtype binary function
|
||||
|
@ -57,9 +55,6 @@ definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (fins
|
|||
| decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n)
|
||||
end)
|
||||
|
||||
definition singleton (a : A) : finset A :=
|
||||
to_finset_of_nodup [a] !nodup_singleton
|
||||
|
||||
definition mem (a : A) (s : finset A) : Prop :=
|
||||
quot.lift_on s (λ l, a ∈ elt_of l)
|
||||
(λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro
|
||||
|
@ -75,9 +70,19 @@ theorem mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈
|
|||
theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l :=
|
||||
λ ainl, ainl
|
||||
|
||||
/- singleton -/
|
||||
definition singleton (a : A) : finset A :=
|
||||
to_finset_of_nodup [a] !nodup_singleton
|
||||
|
||||
theorem mem_singleton (a : A) : a ∈ singleton a :=
|
||||
mem_of_mem_list !mem_cons
|
||||
|
||||
theorem eq_of_mem_singleton {x a : A} : x ∈ singleton a → x = a :=
|
||||
list.mem_singleton
|
||||
|
||||
theorem mem_singleton_eq (x a : A) : (x ∈ singleton a) = (x = a) :=
|
||||
propext (iff.intro eq_of_mem_singleton (assume H, eq.subst H !mem_singleton))
|
||||
|
||||
definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) :=
|
||||
λ a s, quot.rec_on_subsingleton s
|
||||
(λ l, match list.decidable_mem a (elt_of l) with
|
||||
|
@ -88,7 +93,7 @@ definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : fins
|
|||
theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l :=
|
||||
λ ainl, mem_erase_dup ainl
|
||||
|
||||
theorem mem_to_finset_of_nodub {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
|
||||
theorem mem_to_finset_of_nodup {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
|
||||
λ ainl, ainl
|
||||
|
||||
/- extensionality -/
|
||||
|
@ -104,6 +109,9 @@ notation `∅` := !empty
|
|||
theorem not_mem_empty (a : A) : a ∉ ∅ :=
|
||||
λ aine : a ∈ ∅, aine
|
||||
|
||||
theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
|
||||
propext (iff.mp' !iff_false_iff_not !not_mem_empty)
|
||||
|
||||
/- universe -/
|
||||
definition univ [h : fintype A] : finset A :=
|
||||
to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h)
|
||||
|
@ -111,6 +119,8 @@ to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h)
|
|||
theorem mem_univ [h : fintype A] (x : A) : x ∈ univ :=
|
||||
fintype.complete x
|
||||
|
||||
theorem mem_univ_eq [h : fintype A] (x : A) : x ∈ univ = true := propext (iff_true_intro !mem_univ)
|
||||
|
||||
/- card -/
|
||||
definition card (s : finset A) : nat :=
|
||||
quot.lift_on s
|
||||
|
@ -133,13 +143,42 @@ quot.lift_on s
|
|||
(λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l)))
|
||||
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
|
||||
|
||||
-- set builder notation
|
||||
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a
|
||||
notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
|
||||
|
||||
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
|
||||
quot.induction_on s
|
||||
(λ l : nodup_list A, mem_to_finset_of_nodub _ !list.mem_insert)
|
||||
(λ l : nodup_list A, mem_to_finset_of_nodup _ !list.mem_insert)
|
||||
|
||||
theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s :=
|
||||
quot.induction_on s
|
||||
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodub _ (list.mem_insert_of_mem _ ainl))
|
||||
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodup _ (list.mem_insert_of_mem _ ainl))
|
||||
|
||||
theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
||||
quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H)
|
||||
|
||||
theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a ∨ x ∈ s) :=
|
||||
propext (iff.intro
|
||||
(!eq_or_mem_of_mem_insert)
|
||||
(assume H, or.elim H
|
||||
(assume H' : x = a, eq.subst (eq.symm H') !mem_insert)
|
||||
(assume H' : x ∈ s, !mem_insert_of_mem H')))
|
||||
|
||||
theorem insert_empty_eq (a : A) : ⦃a⦄ = singleton a := rfl
|
||||
|
||||
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
|
||||
ext
|
||||
take x,
|
||||
begin
|
||||
rewrite [!mem_insert_eq],
|
||||
show x = a ∨ x ∈ s ↔ x ∈ s, from
|
||||
iff.intro
|
||||
(assume H1, or.elim H1
|
||||
(assume H2 : x = a, eq.subst (eq.symm H2) H)
|
||||
(assume H2, H2))
|
||||
(assume H1, or.inr H1)
|
||||
end
|
||||
|
||||
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
|
||||
quot.induction_on s
|
||||
|
@ -148,6 +187,32 @@ quot.induction_on s
|
|||
theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 :=
|
||||
quot.induction_on s
|
||||
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
|
||||
|
||||
protected theorem induction {P : finset A → Prop}
|
||||
(H1 : P empty)
|
||||
(H2 : ∀⦃s : finset A⦄, ∀{a : A}, a ∉ s → P s → P (insert a s)) :
|
||||
∀s, P s :=
|
||||
take s,
|
||||
quot.induction_on s
|
||||
take u,
|
||||
subtype.destruct u
|
||||
take l,
|
||||
list.induction_on l
|
||||
(assume nodup_l, H1)
|
||||
(take a l',
|
||||
assume IH nodup_al',
|
||||
have anl' : a ∉ l', from not_mem_of_nodup_cons nodup_al',
|
||||
assert H3 : list.insert a l' = a :: l', from insert_eq_of_not_mem anl',
|
||||
assert nodup_l' : nodup l', from nodup_of_nodup_cons nodup_al',
|
||||
assert P_l' : P (quot.mk (subtype.tag l' nodup_l')), from IH nodup_l',
|
||||
assert H4 : P (insert a (quot.mk (subtype.tag l' nodup_l'))), from H2 anl' P_l',
|
||||
begin rewrite [eq.symm H3], apply H4 end)
|
||||
|
||||
protected theorem induction_on {P : finset A → Prop} (s : finset A)
|
||||
(H1 : P empty)
|
||||
(H2 : ∀⦃s : finset A⦄, ∀{a : A}, a ∉ s → P s → P (insert a s)) :
|
||||
P s :=
|
||||
induction H1 H2 s
|
||||
end insert
|
||||
|
||||
/- erase -/
|
||||
|
@ -171,22 +236,6 @@ theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a
|
|||
quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl)
|
||||
end erase
|
||||
|
||||
/- disjoint -/
|
||||
definition disjoint (s₁ s₂ : finset A) : Prop :=
|
||||
quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂))
|
||||
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
|
||||
(λ d₁ a (ainw₁ : a ∈ elt_of w₁),
|
||||
have ainv₁ : a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁,
|
||||
have nainv₂ : a ∉ elt_of v₂, from disjoint_left d₁ ainv₁,
|
||||
not_mem_perm p₂ nainv₂)
|
||||
(λ d₂ a (ainv₁ : a ∈ elt_of v₁),
|
||||
have ainw₁ : a ∈ elt_of w₁, from mem_perm p₁ ainv₁,
|
||||
have nainw₂ : a ∉ elt_of w₂, from disjoint_left d₂ ainw₁,
|
||||
not_mem_perm (perm.symm p₂) nainw₂)))
|
||||
|
||||
theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d)
|
||||
|
||||
/- union -/
|
||||
section union
|
||||
variable [h : decidable_eq A]
|
||||
|
@ -204,18 +253,27 @@ notation s₁ ∪ s₂ := union s₁ s₂
|
|||
theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁)
|
||||
|
||||
theorem mem_union_l {a : A} {s₁ : finset A} {s₂ : finset A} : a ∈ s₁ → a ∈ s₁ ∪ s₂ :=
|
||||
mem_union_left s₂
|
||||
|
||||
theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂)
|
||||
|
||||
theorem mem_union_r {a : A} {s₂ : finset A} {s₁ : finset A} : a ∈ s₂ → a ∈ s₁ ∪ s₂ :=
|
||||
mem_union_right s₁
|
||||
|
||||
theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂)
|
||||
|
||||
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) :=
|
||||
propext (iff.intro
|
||||
theorem mem_union_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ :=
|
||||
iff.intro
|
||||
(λ h, mem_or_mem_of_mem_union h)
|
||||
(λ d, or.elim d
|
||||
(λ i, mem_union_left _ i)
|
||||
(λ i, mem_union_right _ i)))
|
||||
(λ i, mem_union_right _ i))
|
||||
|
||||
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) :=
|
||||
propext !mem_union_iff
|
||||
|
||||
theorem union.comm (s₁ s₂ : finset A) : s₁ ∪ s₂ = s₂ ∪ s₁ :=
|
||||
ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
|
||||
|
@ -236,6 +294,17 @@ ext (λ a, iff.intro
|
|||
theorem empty_union (s : finset A) : ∅ ∪ s = s :=
|
||||
calc ∅ ∪ s = s ∪ ∅ : union.comm
|
||||
... = s : union_empty
|
||||
|
||||
theorem insert_eq (a : A) (s : finset A) : insert a s = singleton a ∪ s :=
|
||||
ext (take x,
|
||||
calc
|
||||
x ∈ insert a s ↔ x ∈ insert a s : iff.refl
|
||||
... = (x = a ∨ x ∈ s) : mem_insert_eq
|
||||
... = (x ∈ singleton a ∨ x ∈ s) : mem_singleton_eq
|
||||
... = (x ∈ ⦃a⦄ ∪ s) : mem_union_eq)
|
||||
|
||||
theorem insert_union (a : A) (s t : finset A) : insert a (s ∪ t) = insert a s ∪ t :=
|
||||
by rewrite [*insert_eq, union.assoc]
|
||||
end union
|
||||
|
||||
/- inter -/
|
||||
|
@ -258,13 +327,16 @@ quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_
|
|||
theorem mem_of_mem_inter_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_right ainl₁l₂)
|
||||
|
||||
theorem mem_inter_of_mem_of_mem {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
|
||||
theorem mem_inter {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_inter_of_mem_of_mem ainl₁ ainl₂)
|
||||
|
||||
theorem mem_inter_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
|
||||
propext (iff.intro
|
||||
theorem mem_inter_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ :=
|
||||
iff.intro
|
||||
(λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h))
|
||||
(λ h, mem_inter_of_mem_of_mem (and.elim_left h) (and.elim_right h)))
|
||||
(λ h, mem_inter (and.elim_left h) (and.elim_right h))
|
||||
|
||||
theorem mem_inter_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
|
||||
propext !mem_inter_iff
|
||||
|
||||
theorem inter.comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
|
||||
ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm)
|
||||
|
@ -275,7 +347,7 @@ ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc)
|
|||
theorem inter_self (s : finset A) : s ∩ s = s :=
|
||||
ext (λ a, iff.intro
|
||||
(λ h, mem_of_mem_inter_right h)
|
||||
(λ h, mem_inter_of_mem_of_mem h h))
|
||||
(λ h, mem_inter h h))
|
||||
|
||||
theorem inter_empty (s : finset A) : s ∩ ∅ = ∅ :=
|
||||
ext (λ a, iff.intro
|
||||
|
@ -285,8 +357,79 @@ ext (λ a, iff.intro
|
|||
theorem empty_inter (s : finset A) : ∅ ∩ s = ∅ :=
|
||||
calc ∅ ∩ s = s ∩ ∅ : inter.comm
|
||||
... = ∅ : inter_empty
|
||||
|
||||
theorem singleton_inter_of_mem {a : A} {s : finset A} (H : a ∈ s) :
|
||||
singleton a ∩ s = singleton a :=
|
||||
ext (take x,
|
||||
begin
|
||||
rewrite [mem_inter_eq, !mem_singleton_eq],
|
||||
exact iff.intro
|
||||
(assume H1 : x = a ∧ x ∈ s, and.left H1)
|
||||
(assume H1 : x = a, and.intro H1 (eq.subst (eq.symm H1) H))
|
||||
end)
|
||||
|
||||
theorem singleton_inter_of_not_mem {a : A} {s : finset A} (H : a ∉ s) :
|
||||
singleton a ∩ s = ∅ :=
|
||||
ext (take x,
|
||||
begin
|
||||
rewrite [mem_inter_eq, !mem_singleton_eq, mem_empty_eq],
|
||||
exact iff.intro
|
||||
(assume H1 : x = a ∧ x ∈ s, H (eq.subst (and.left H1) (and.right H1)))
|
||||
(false.elim)
|
||||
end)
|
||||
end inter
|
||||
|
||||
/- distributivity laws -/
|
||||
section inter
|
||||
variable [h : decidable_eq A]
|
||||
include h
|
||||
|
||||
theorem inter.distrib_left (s t u : finset A) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
|
||||
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_left)
|
||||
|
||||
theorem inter.distrib_right (s t u : finset A) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
|
||||
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_right)
|
||||
|
||||
theorem union.distrib_left (s t u : finset A) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
|
||||
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_left)
|
||||
|
||||
theorem union.distrib_right (s t u : finset A) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
|
||||
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_right)
|
||||
end inter
|
||||
|
||||
/- disjoint -/
|
||||
-- Mainly for internal use; library will use s₁ ∩ s₂ = ∅. Note that it does not require decidable equality.
|
||||
definition disjoint (s₁ s₂ : finset A) : Prop :=
|
||||
quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂))
|
||||
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
|
||||
(λ d₁ a (ainw₁ : a ∈ elt_of w₁),
|
||||
have ainv₁ : a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁,
|
||||
have nainv₂ : a ∉ elt_of v₂, from disjoint_left d₁ ainv₁,
|
||||
not_mem_perm p₂ nainv₂)
|
||||
(λ d₂ a (ainv₁ : a ∈ elt_of v₁),
|
||||
have ainw₁ : a ∈ elt_of w₁, from mem_perm p₁ ainv₁,
|
||||
have nainw₂ : a ∉ elt_of w₂, from disjoint_left d₂ ainw₁,
|
||||
not_mem_perm (perm.symm p₂) nainw₂)))
|
||||
|
||||
theorem disjoint.elim {s₁ s₂ : finset A} {x : A} :
|
||||
disjoint s₁ s₂ → x ∈ s₁ → x ∈ s₂ → false :=
|
||||
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H H1 H2, H x H1 H2)
|
||||
|
||||
theorem disjoint.intro {s₁ s₂ : finset A} : (∀{x : A}, x ∈ s₁ → x ∈ s₂ → false) → disjoint s₁ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H, H)
|
||||
|
||||
theorem inter_empty_of_disjoint [h : decidable_eq A] {s₁ s₂ : finset A} (H : disjoint s₁ s₂) : s₁ ∩ s₂ = ∅ :=
|
||||
ext (take x, iff_false_intro (assume H1,
|
||||
disjoint.elim H (mem_of_mem_inter_left H1) (mem_of_mem_inter_right H1)))
|
||||
|
||||
theorem disjoint_of_inter_empty [h : decidable_eq A] {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) : disjoint s₁ s₂ :=
|
||||
disjoint.intro (take x H1 H2,
|
||||
have H3 : x ∈ s₁ ∩ s₂, from mem_inter H1 H2,
|
||||
!not_mem_empty (eq.subst H H3))
|
||||
|
||||
theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d)
|
||||
|
||||
/- subset -/
|
||||
definition subset (s₁ s₂ : finset A) : Prop :=
|
||||
quot.lift_on₂ s₁ s₂
|
||||
|
@ -297,19 +440,19 @@ quot.lift_on₂ s₁ s₂
|
|||
|
||||
infix `⊆`:50 := subset
|
||||
|
||||
theorem nil_sub (s : finset A) : ∅ ⊆ s :=
|
||||
theorem empty_subset (s : finset A) : ∅ ⊆ s :=
|
||||
quot.induction_on s (λ l, list.nil_sub (elt_of l))
|
||||
|
||||
theorem sub_univ [h : fintype A] (s : finset A) : s ⊆ univ :=
|
||||
theorem subset_univ [h : fintype A] (s : finset A) : s ⊆ univ :=
|
||||
quot.induction_on s (λ l a i, fintype.complete a)
|
||||
|
||||
theorem sub.refl (s : finset A) : s ⊆ s :=
|
||||
theorem subset.refl (s : finset A) : s ⊆ s :=
|
||||
quot.induction_on s (λ l, list.sub.refl (elt_of l))
|
||||
|
||||
theorem sub.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
|
||||
theorem subset.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
|
||||
quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans h₁ h₂)
|
||||
|
||||
theorem mem_of_sub_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||||
theorem mem_of_subset_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂)
|
||||
|
||||
/- upto -/
|
||||
|
@ -328,6 +471,12 @@ list.mem_upto_succ_of_mem_upto
|
|||
|
||||
theorem mem_upto_of_lt {n a : nat} : a < n → a ∈ upto n :=
|
||||
list.mem_upto_of_lt
|
||||
|
||||
theorem mem_upto_iff (a n : nat) : a ∈ upto n ↔ a < n :=
|
||||
iff.intro lt_of_mem_upto mem_upto_of_lt
|
||||
|
||||
theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) :=
|
||||
propext !mem_upto_iff
|
||||
end upto
|
||||
end finset
|
||||
abbreviation finset := finset.finset
|
||||
|
|
Loading…
Reference in a new issue