feat(library/data/set): add distributivity, diff, uniformize with finset

This commit is contained in:
Jeremy Avigad 2015-05-08 12:52:46 +10:00
parent 9e26dddaf3
commit a54a98c1ec

View file

@ -8,116 +8,161 @@ Author: Jeremy Avigad, Leonardo de Moura
import logic
open eq.ops
definition set [reducible] (T : Type) := T → Prop
definition set [reducible] (X : Type) := X → Prop
namespace set
variable {T : Type}
variable {X : Type}
/- membership and subset -/
definition mem [reducible] (x : T) (a : set T) := a x
notation e ∈ a := mem e a
definition mem [reducible] (x : X) (a : set X) := a x
infix `∈` := mem
notation a ∉ b := ¬ mem a b
theorem setext {a b : set T} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))
definition subset (a b : set T) := ∀⦃x⦄, x ∈ a → x ∈ b
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
infix `⊆`:50 := subset
/- bounded quantification -/
abbreviation bounded_forall (a : set T) (P : T → Prop) := ∀⦃x⦄, x ∈ a → P x
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
abbreviation bounded_exists (a : set T) (P : T → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
/- empty set -/
definition empty [reducible] : set T := λx, false
definition empty [reducible] : set X := λx, false
notation `∅` := empty
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
/- universal set -/
definition univ : set T := λx, true
definition univ : set X := λx, true
theorem mem_univ (x : T) : x ∈ univ := trivial
theorem mem_univ (x : X) : x ∈ univ := trivial
/- intersection -/
definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem inter_self (a : set T) : a ∩ a = a :=
setext (take x, !and_self)
theorem inter_empty (a : set T) : a ∩ ∅ = ∅ :=
setext (take x, !and_false)
theorem empty_inter (a : set T) : ∅ ∩ a = ∅ :=
setext (take x, !false_and)
theorem inter.comm (a b : set T) : a ∩ b = b ∩ a :=
setext (take x, !and.comm)
theorem inter.assoc (a b c : set T) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
setext (take x, !and.assoc)
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
/- union -/
definition union [reducible] (a b : set T) : set T := λx, x ∈ a x ∈ b
definition union [reducible] (a b : set X) : set X := λx, x ∈ a x ∈ b
notation a b := union a b
theorem mem_union (x : T) (a b : set T) : x ∈ a b ↔ x ∈ a x ∈ b := !iff.refl
theorem mem_union (x : X) (a b : set X) : x ∈ a b ↔ x ∈ a x ∈ b := !iff.refl
theorem union_self (a : set T) : a a = a :=
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a b = (x ∈ a x ∈ b) := rfl
theorem union_self (a : set X) : a a = a :=
setext (take x, !or_self)
theorem union_empty (a : set T) : a ∅ = a :=
theorem union_empty (a : set X) : a ∅ = a :=
setext (take x, !or_false)
theorem empty_union (a : set T) : ∅ a = a :=
theorem empty_union (a : set X) : ∅ a = a :=
setext (take x, !false_or)
theorem union.comm (a b : set T) : a b = b a :=
theorem union.comm (a b : set X) : a b = b a :=
setext (take x, or.comm)
theorem union_assoc (a b c : set T) : (a b) c = a (b c) :=
theorem union_assoc (a b c : set X) : (a b) c = a (b c) :=
setext (take x, or.assoc)
/- intersection -/
definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem inter_self (a : set X) : a ∩ a = a :=
setext (take x, !and_self)
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
setext (take x, !and_false)
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
setext (take x, !false_and)
theorem inter.comm (a b : set X) : a ∩ b = b ∩ a :=
setext (take x, !and.comm)
theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
setext (take x, !and.assoc)
/- distributivity laws -/
theorem inter.distrib_left (s t u : set X) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
setext (take x, !and.distrib_left)
theorem inter.distrib_right (s t u : set X) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
setext (take x, !and.distrib_right)
theorem union.distrib_left (s t u : set X) : s (t ∩ u) = (s t) ∩ (s u) :=
setext (take x, !or.distrib_left)
theorem union.distrib_right (s t u : set X) : (s ∩ t) u = (s u) ∩ (t u) :=
setext (take x, !or.distrib_right)
/- set-builder notation -/
-- {x : T | P}
definition set_of (P : T → Prop) : set T := P
-- {x : X | P}
definition set_of (P : X → Prop) : set X := P
notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r
-- {x ∈ s | P}
definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
-- {[x, y, z]} or ⦃x, y, z⦄
definition insert (x : T) (a : set T) : set T := {y : T | y = x y ∈ a}
definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a}
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a
notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
/- set difference -/
definition diff (s t : set X) : set X := {x ∈ s | x ∉ t}
infix `\`:70 := diff
theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s :=
and.left H
theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t :=
and.right H
theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
and.intro H1 H2
theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
/- large unions -/
section
variables {I : Type}
variable a : set I
variable b : I → set T
variable C : set (set T)
variable b : I → set X
variable C : set (set X)
definition Inter : set T := {x : T | ∀i, x ∈ b i}
definition bInter : set T := {x : T | ∀₀ i ∈ a, x ∈ b i}
definition sInter : set T := {x : T | ∀₀ c ∈ C, x ∈ c}
definition Union : set T := {x : T | ∃i, x ∈ b i}
definition bUnion : set T := {x : T | ∃₀ i ∈ a, x ∈ b i}
definition sUnion : set T := {x : T | ∃₀ c ∈ C, x ∈ c}
definition Inter : set X := {x : X | ∀i, x ∈ b i}
definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i}
definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c}
definition Union : set X := {x : X | ∃i, x ∈ b i}
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
-- TODO: need notation for these
end