test(tests/lean/run): add new test
This commit is contained in:
parent
1ab39a518f
commit
4f06e91ce5
2 changed files with 30 additions and 7 deletions
|
@ -35,11 +35,4 @@ set_option blast.ematch true
|
|||
|
||||
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
|
||||
by blast
|
||||
|
||||
attribute mul_one [forward]
|
||||
attribute inv_mul_cancel_right [forward]
|
||||
|
||||
-- TODO(Leo): check if qfc can get this one
|
||||
-- theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
|
||||
-- by blast
|
||||
end
|
||||
|
|
30
tests/lean/run/blast_ematch6.lean
Normal file
30
tests/lean/run/blast_ematch6.lean
Normal file
|
@ -0,0 +1,30 @@
|
|||
import algebra.ring data.nat
|
||||
open algebra
|
||||
|
||||
variables {A : Type}
|
||||
|
||||
section
|
||||
variable [s : group A]
|
||||
include s
|
||||
|
||||
set_option blast.simp false
|
||||
set_option blast.subst false
|
||||
set_option blast.ematch true
|
||||
|
||||
attribute mul_one [forward]
|
||||
attribute mul.assoc [forward]
|
||||
attribute mul.left_inv [forward]
|
||||
attribute one_mul [forward]
|
||||
|
||||
theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
|
||||
-- This is the kind of theorem that can be easily proved using superposition,
|
||||
-- but cannot to be proved using E-matching.
|
||||
-- To prove it using E-matching, we must provide the following auxiliary assertion.
|
||||
-- E-matching can prove it automatically, and then it is trivial to prove the conclusion
|
||||
-- using it.
|
||||
-- Remark: this theorem can also be proved using model-based quantifier instantiation (MBQI) available in Z3.
|
||||
-- So, we may be able to prove it using qcf.
|
||||
assert a⁻¹ * 1 = b, by blast,
|
||||
by blast
|
||||
|
||||
end
|
Loading…
Add table
Reference in a new issue