test(tests/lean/run/div_wf): cleanup

This commit is contained in:
Leonardo de Moura 2014-11-18 17:59:14 -08:00
parent a065c7bf96
commit 4fbb5cfcca

View file

@ -1,4 +1,4 @@
import data.nat data.prod
import data.nat data.prod logic.wf_k
open nat well_founded decidable prod eq.ops
-- I use "dependent" if-then-else to be able to communicate the if-then-else condition
@ -20,8 +20,6 @@ dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zer
definition wdiv (x y : nat) :=
fix wdiv.F x y
eval wdiv 6 2
theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 :=
congr_fun (well_founded.fix_eq wdiv.F x) y
@ -31,7 +29,8 @@ congr_fun (well_founded.fix_eq wdiv.F x) y
-- It will always pack things.
definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel)
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := prod.lex.wf lt.wf lt.wf
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
intro_k (prod.lex.wf lt.wf lt.wf) 20 -- allow 20 recursive calls without computing with proofs
infixl `≺`:50 := pair_nat.lt
-- Recursive lemma used to justify recursive call
@ -48,8 +47,6 @@ dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux p₁ Hp) + 1) else (λ
definition pdiv (x y : nat) :=
fix pdiv.F (x, y)
eval pdiv 9 2
theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero :=
well_founded.fix_eq pdiv.F (x, y)
@ -58,3 +55,6 @@ well_founded.fix_eq pdiv.F (x, y)
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) :
dite c (λ Hc, t) (λ Hnc, e) = ite c t e :=
rfl
example : pdiv 398 23 = 17 :=
rfl