refactor(hott/algebra/precategory/yoneda): reduce compilation time to 1sec using rewrite tactic
After the latest improvements, the rewrite tactic "works" more often at yoneda.hlean
This commit is contained in:
parent
7ca882d69a
commit
55586dcb2d
1 changed files with 27 additions and 32 deletions
|
@ -49,9 +49,9 @@ namespace functor
|
||||||
(λd d' g, F (id, g))
|
(λd d' g, F (id, g))
|
||||||
(λd, !respect_id)
|
(λd, !respect_id)
|
||||||
(λd₁ d₂ d₃ g' g, calc
|
(λd₁ d₂ d₃ g' g, calc
|
||||||
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_comp c)⁻¹}
|
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_comp
|
||||||
... = F ((id,g') ∘ (id, g)) : idp
|
... = F ((id,g') ∘ (id, g)) : by esimp
|
||||||
... = F (id,g') ∘ F (id, g) : by rewrite (respect_comp F))
|
... = F (id,g') ∘ F (id, g) : by rewrite (respect_comp F))
|
||||||
|
|
||||||
local abbreviation Fob := @functor_curry_ob
|
local abbreviation Fob := @functor_curry_ob
|
||||||
|
|
||||||
|
@ -59,10 +59,10 @@ namespace functor
|
||||||
nat_trans.mk (λd, F (f, id))
|
nat_trans.mk (λd, F (f, id))
|
||||||
(λd d' g, calc
|
(λd d' g, calc
|
||||||
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
|
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
|
||||||
... = F (f, g ∘ id) : by rewrite id_left
|
... = F (f, g ∘ id) : by rewrite id_left
|
||||||
... = F (f, g) : by rewrite id_right
|
... = F (f, g) : by rewrite id_right
|
||||||
... = F (f ∘ id, g) : by rewrite id_right
|
... = F (f ∘ id, g) : by rewrite id_right
|
||||||
... = F (f ∘ id, id ∘ g) : by rewrite id_left
|
... = F (f ∘ id, id ∘ g) : by rewrite id_left
|
||||||
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ)
|
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ)
|
||||||
|
|
||||||
local abbreviation Fhom := @functor_curry_hom
|
local abbreviation Fhom := @functor_curry_hom
|
||||||
|
@ -77,10 +77,10 @@ namespace functor
|
||||||
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
||||||
nat_trans_eq_mk (λd, calc
|
nat_trans_eq_mk (λd, calc
|
||||||
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def
|
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def
|
||||||
... = F (f' ∘ f, id ∘ id) : {(id_comp d)⁻¹}
|
... = F (f' ∘ f, id ∘ id) : by rewrite id_comp
|
||||||
... = F ((f',id) ∘ (f, id)) : idp
|
... = F ((f',id) ∘ (f, id)) : by esimp
|
||||||
... = F (f',id) ∘ F (f, id) : respect_comp F
|
... = F (f',id) ∘ F (f, id) : respect_comp F
|
||||||
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : idp)
|
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp)
|
||||||
|
|
||||||
definition functor_curry [reducible] : C ⇒ E ^c D :=
|
definition functor_curry [reducible] : C ⇒ E ^c D :=
|
||||||
functor.mk (functor_curry_ob F)
|
functor.mk (functor_curry_ob F)
|
||||||
|
@ -98,28 +98,28 @@ namespace functor
|
||||||
|
|
||||||
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
|
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
|
||||||
calc
|
calc
|
||||||
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : idp
|
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
|
||||||
... = id ∘ natural_map (to_fun_hom G id) p.2 : ap (λx, x ∘ _) (respect_id (to_fun_ob G p.1) p.2)
|
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
|
||||||
... = id ∘ natural_map nat_trans.id p.2 : {respect_id G p.1}
|
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
|
||||||
... = id : id_comp
|
... = id : id_comp
|
||||||
|
|
||||||
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
|
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
|
||||||
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
|
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
|
||||||
calc
|
calc
|
||||||
Ghom G (f' ∘ f)
|
Ghom G (f' ∘ f)
|
||||||
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : idp
|
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : {respect_comp (to_fun_ob G p''.1) f'.2 f.2}
|
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite (respect_comp (to_fun_ob G p''.1) f'.2 f.2)
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : {respect_comp G f'.1 f.1}
|
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite (respect_comp G f'.1 f.1)
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : idp
|
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
|
||||||
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : idp
|
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
|
||||||
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
|
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
|
||||||
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
|
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
|
||||||
square_prepostcompose (!naturality⁻¹ᵖ) _ _
|
square_prepostcompose (!naturality⁻¹ᵖ) _ _
|
||||||
... = Ghom G f' ∘ Ghom G f : idp
|
... = Ghom G f' ∘ Ghom G f : by esimp
|
||||||
|
|
||||||
definition functor_uncurry [reducible] : C ×c D ⇒ E :=
|
definition functor_uncurry [reducible] : C ×c D ⇒ E :=
|
||||||
functor.mk (functor_uncurry_ob G)
|
functor.mk (functor_uncurry_ob G)
|
||||||
|
@ -151,10 +151,6 @@ namespace functor
|
||||||
-- → F₁ = F₂ :=
|
-- → F₁ = F₂ :=
|
||||||
-- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1))
|
-- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1))
|
||||||
|
|
||||||
|
|
||||||
set_option pp.full_names true
|
|
||||||
open tactic
|
|
||||||
print raw id
|
|
||||||
--set_option pp.notation false
|
--set_option pp.notation false
|
||||||
definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
||||||
functor_eq_mk (λp, ap (to_fun_ob F) !prod.eta)
|
functor_eq_mk (λp, ap (to_fun_ob F) !prod.eta)
|
||||||
|
@ -163,10 +159,10 @@ namespace functor
|
||||||
cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g),
|
cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g),
|
||||||
have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
||||||
from calc
|
from calc
|
||||||
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : idp
|
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
|
||||||
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
|
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
|
||||||
... = F (f, g ∘ id) : {id_left f}
|
... = F (f, g ∘ id) : by rewrite id_left
|
||||||
... = F (f,g) : {id_right g},
|
... = F (f,g) : by rewrite id_right,
|
||||||
rewrite H,
|
rewrite H,
|
||||||
apply sorry
|
apply sorry
|
||||||
end
|
end
|
||||||
|
@ -181,12 +177,11 @@ namespace functor
|
||||||
have H : to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g,
|
have H : to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g,
|
||||||
from calc
|
from calc
|
||||||
to_fun_hom (functor_curry (functor_uncurry G) c) g
|
to_fun_hom (functor_curry (functor_uncurry G) c) g
|
||||||
= to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : idp
|
= to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp
|
||||||
... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d
|
... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id
|
||||||
: ap (λx, to_fun_hom (G c) g ∘ natural_map x d) (respect_id G c)
|
|
||||||
... = to_fun_hom (G c) g : id_right,
|
... = to_fun_hom (G c) g : id_right,
|
||||||
rewrite H,
|
rewrite H,
|
||||||
-- esimp {idp},
|
-- esimp {idp},
|
||||||
apply sorry
|
apply sorry
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|
Loading…
Reference in a new issue