feat(hott) add rezk completion as univalent category

This commit is contained in:
Jakob von Raumer 2016-07-02 14:49:05 +02:00 committed by Leonardo de Moura
parent 86d9a1c84d
commit 57bf0a09dd
2 changed files with 56 additions and 12 deletions

View file

@ -37,7 +37,7 @@ namespace rezk_carrier
begin
apply cancel_right (pth (iso.refl a)), refine _ ⬝ !idp_con⁻¹,
refine !resp_comp⁻¹ ⬝ _,
apply ap pth, apply iso_eq, esimp[iso.refl], apply id_left,
apply ap pth, apply iso_eq, apply id_left,
end
protected definition rec {P : rezk_carrier → Type} [Π x, is_trunc 1 (P x)]
@ -296,7 +296,7 @@ namespace rezk_completion
definition rezk_embedding (C : Precategory) : functor C (to_rezk_Precategory C) :=
begin
fapply functor.mk, apply elt,
{ intro a b f, unfold [to_rezk_Precategory, rezk_precategory], exact f },
{ intro a b f, exact f },
do 2 (intros; reflexivity)
end
@ -356,20 +356,27 @@ namespace rezk_completion
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp A C
end
protected definition id_of_iso (a b : @rezk_carrier A C) :
private definition eq_of_iso_pt {a : A} {b : @rezk_carrier A C} :
elt a ≅ b → elt a = b :=
begin
intro f,
induction b using rezk_carrier.set_rec with b b b' ib,
apply pth, apply iso_of_elt_iso f,
apply arrow_pathover, intro f g p, apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹, apply square_of_eq,
refine !resp_comp⁻¹ ⬝ (ap pth _)⁻¹ ⬝ !idp_con⁻¹,
apply concat, apply inverse, apply ap rezk_completion.iso_of_elt_iso,
apply eq_of_parallel_po_right (pathover_iso_pth _ _) p,
apply concat, apply iso_of_elt_iso_distrib,
apply ap (λ x, _ ⬝i x), apply equiv.to_left_inv !iso_equiv_elt_iso
end
protected definition eq_of_iso {a b : @rezk_carrier A C} :
a ≅ b → a = b :=
begin
intro f,
induction a using rezk_carrier.set_rec with a a a' ia,
{ induction b using rezk_carrier.set_rec with b b b' ib,
apply pth, apply iso_of_elt_iso f,
apply arrow_pathover, intro f g p, apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹, apply square_of_eq,
refine !resp_comp⁻¹ ⬝ (ap pth _)⁻¹ ⬝ !idp_con⁻¹,
apply concat, apply inverse, apply ap rezk_completion.iso_of_elt_iso,
apply eq_of_parallel_po_right (pathover_iso_pth _ _) p,
apply concat, apply iso_of_elt_iso_distrib,
apply ap (λ x, _ ⬝i x), apply equiv.to_left_inv !iso_equiv_elt_iso },
apply eq_of_iso_pt f,
{ induction b using rezk_carrier.set_rec with b b b' ib,
{ apply arrow_pathover, intro f g p, apply eq_pathover,
refine !ap_id ⬝ph _ ⬝hp !ap_constant⁻¹, apply square_of_eq,
@ -383,5 +390,37 @@ namespace rezk_completion
apply @is_prop.elimo }
end
protected definition eq_of_iso_of_eq (a b : @rezk_carrier A C) (p : a = b) :
eq_of_iso (iso_of_eq p) = p :=
begin
cases p, clear b,
induction a using rezk_carrier.prop_rec,
refine ap pth _ ⬝ !resp_id,
apply iso_eq, reflexivity
end
protected definition iso_of_eq_of_iso (a b : @rezk_carrier A C) (f : a ≅ b) :
iso_of_eq (eq_of_iso f) = f :=
begin
induction a using rezk_carrier.prop_rec with a,
induction b using rezk_carrier.prop_rec with b,
cases f with f Hf, apply iso_eq,
apply concat, apply ap to_hom, apply !transport_iso_of_eq⁻¹,
apply concat, apply ap to_hom, apply tr_eq_of_pathover, apply pathover_iso_pth,
cases Hf with invf linv rinv, apply id_right,
end
end
definition rezk_category.{l k} {A : Type.{l}} [C : precategory.{l k} A] :
category.{(max l k) k} (@rezk_carrier.{l k} A C) :=
begin
fapply category.mk (rezk_precategory A C),
intros, fapply is_equiv.adjointify,
apply rezk_completion.eq_of_iso,
apply rezk_completion.iso_of_eq_of_iso,
apply rezk_completion.eq_of_iso_of_eq
end
end rezk_completion

View file

@ -221,6 +221,10 @@ namespace iso
: iso_of_eq (p ⬝ q) = iso.trans (iso_of_eq p) (iso_of_eq q) :=
eq.rec_on q (eq.rec_on p (iso_eq !id_id⁻¹))
definition transport_iso_of_eq (p : a = b) :
p ▸ !iso.refl = iso_of_eq p :=
by cases p; reflexivity
section
open funext
variables {X : Type} {x y : X} {F G : X → ob}
@ -243,6 +247,7 @@ namespace iso
hom_of_eq (apd10 (eq_of_homotopy p) y) ∘ f ∘ inv_of_eq (apd10 (eq_of_homotopy p) x)
: transport_hom_of_eq
... = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) : {right_inv apd10 p}
end
structure mono [class] (f : a ⟶ b) :=