lean2/hott/algebra/category/constructions/rezk.hlean
2016-07-09 10:31:42 -07:00

426 lines
17 KiB
Text

import algebra.category hit.two_quotient types.trunc types.arrow
open eq category equiv trunc_two_quotient is_trunc iso relation e_closure function pi
namespace e_closure
definition elim_trans [unfold_full] {A B : Type} {f : A → B} {R : A → A → Type} {a a' a'' : A}
(po : Π⦃a a' : A⦄ (s : R a a'), f a = f a') (t : e_closure R a a') (t' : e_closure R a' a'')
: e_closure.elim po (t ⬝r t') = e_closure.elim po t ⬝ e_closure.elim po t' :=
by reflexivity
end e_closure open e_closure
namespace rezk_carrier
section
universes l k
parameters {A : Type.{l}} [C : precategory.{l k} A]
include C
inductive rezk_Q : Π ⦃a b : A⦄, e_closure iso a b → e_closure iso a b → Type :=
| comp_con : Π ⦃a b c : A⦄ (g : b ≅ c) (f : a ≅ b) , rezk_Q [f ⬝i g] ([f] ⬝r [g])
definition rezk_carrier := trunc_two_quotient 1 iso rezk_Q
local attribute rezk_carrier [reducible]
definition is_trunc_rezk_carrier [instance] : is_trunc 1 rezk_carrier := _
variables {a b c : A}
definition elt (a : A) : rezk_carrier := incl0 a
definition pth (f : a ≅ b) : elt a = elt b := incl1 f
definition resp_comp (g : b ≅ c) (f : a ≅ b) : pth (f ⬝i g) = pth f ⬝ pth g :=
incl2 (rezk_Q.comp_con g f)
definition resp_id (a : A) : pth (iso.refl a) = idp :=
begin
apply cancel_right (pth (iso.refl a)), refine _ ⬝ !idp_con⁻¹,
refine !resp_comp⁻¹ ⬝ _,
apply ap pth, apply iso_eq, apply id_left,
end
protected definition rec {P : rezk_carrier → Type} [Π x, is_trunc 1 (P x)]
(Pe : Π a, P (elt a)) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b),
change_path (resp_comp g f) (Pp (f ⬝i g)) = Pp f ⬝o Pp g)
(x : rezk_carrier) : P x :=
begin
induction x,
{ apply Pe },
{ apply Pp },
{ induction q with a b c g f, apply Pcomp }
end
protected definition rec_on {P : rezk_carrier → Type} [Π x, is_trunc 1 (P x)]
(x : rezk_carrier)
(Pe : Π a, P (elt a)) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b),
change_path (resp_comp g f) (Pp (f ⬝i g)) = Pp f ⬝o Pp g) : P x :=
rec Pe Pp Pcomp x
protected definition set_rec {P : rezk_carrier → Type} [Π x, is_set (P x)]
(Pe : Π a, P (elt a)) (Pp : Π⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(x : rezk_carrier) : P x :=
rec Pe Pp !center x
protected definition prop_rec {P : rezk_carrier → Type} [Π x, is_prop (P x)]
(Pe : Π a, P (elt a)) (x : rezk_carrier) : P x :=
rec Pe !center !center x
protected definition elim {P : Type} [is_trunc 1 P] (Pe : A → P)
(Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g)
(x : rezk_carrier) : P :=
begin
induction x,
{ exact Pe a },
{ exact Pp s },
{ induction q with a b c g f, exact Pcomp g f }
end
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : rezk_carrier)
(Pe : A → P) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g) : P :=
elim Pe Pp Pcomp x
protected definition set_elim [reducible] {P : Type} [is_set P] (Pe : A → P)
(Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b) (x : rezk_carrier) : P :=
elim Pe Pp !center x
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pe : A → P)
(x : rezk_carrier) : P :=
elim Pe !center !center x
definition elim_pth {P : Type} [is_trunc 1 P] {Pe : A → P} {Pp : Π⦃a b⦄ (f : a ≅ b), Pe a = Pe b}
(Pcomp : Π⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g) {a b : A} (f : a ≅ b) :
ap (elim Pe Pp Pcomp) (pth f) = Pp f :=
!elim_incl1
--TODO generalize this to arbitrary truncated two-quotients or not?
protected definition elim_set.{m} [reducible] (Pe : A → Set.{m}) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
(x : rezk_carrier) : Set.{m} :=
elim Pe (λa b f, tua (Pp f)) (λa b c g f, ap tua (equiv_eq (Pcomp g f)) ⬝ !tua_trans) x
protected definition elim_set_pt.{m} [reducible] (Pe : A → Set.{m}) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
(a : A) : trunctype.carrier (rezk_carrier.elim_set Pe Pp Pcomp (elt a)) = Pe a :=
idp
protected theorem elim_set_pth {Pe : A → Set} {Pp : Π⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b}
(Pcomp : Π⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
{a b : A} (f : a ≅ b) :
transport (elim_set Pe Pp Pcomp) (pth f) = Pp f :=
begin
rewrite [tr_eq_cast_ap_fn, ↑elim_set, ▸*],
rewrite [ap_compose' trunctype.carrier, elim_pth], apply tcast_tua_fn
end
end
end rezk_carrier open rezk_carrier
attribute rezk_carrier.elt [constructor]
attribute rezk_carrier.rec rezk_carrier.elim [unfold 8] [recursor 8]
attribute rezk_carrier.rec_on rezk_carrier.elim_on [unfold 5]
attribute rezk_carrier.set_rec rezk_carrier.set_elim [unfold 7]
attribute rezk_carrier.prop_rec rezk_carrier.prop_elim
rezk_carrier.elim_set [unfold 6]
open trunctype
namespace rezk_completion
section
universes l k
parameters (A : Type.{l}) (C : precategory.{l k} A)
definition rezk_hom_left_pt [constructor] (a : A) (b : @rezk_carrier A C) : Set.{k} :=
begin
refine rezk_carrier.elim_set _ _ _ b,
{ clear b, intro b, exact trunctype.mk' 0 (hom a b) },
{ clear b, intro b b' f, apply equiv_postcompose (iso.to_hom f) },
{ clear b, intro b b' b'' f g x, apply !assoc⁻¹ }
end
private definition transport_rezk_hom_left_pt_eq_comp {a b c : A} (f : hom a b) (g : b ≅ c) :
pathover (rezk_hom_left_pt a) f (pth g) ((to_hom g) ∘ f) :=
begin
apply pathover_of_tr_eq, apply @homotopy_of_eq _ _ _ (λ f, (to_hom g) ∘ f),
apply rezk_carrier.elim_set_pth,
end
definition rezk_hom_left_pth_1_trunc [instance] (a a' : A) (f : a ≅ a') :
Π b, is_trunc 1 (carrier (rezk_hom_left_pt a b) ≃ carrier (rezk_hom_left_pt a' b)) :=
λ b, is_trunc_equiv _ _ _
definition rezk_hom_left_pth (a a' : A) (f : a ≅ a') (b : rezk_carrier) :
carrier (rezk_hom_left_pt a b) ≃ carrier (rezk_hom_left_pt a' b) :=
begin
--induction b using rezk_carrier.rec with b' b' b g, --why does this not work if it works below?
refine @rezk_carrier.rec _ _ _ (rezk_hom_left_pth_1_trunc a a' f) _ _ _ b,
intro b, apply equiv_precompose (to_hom f⁻¹ⁱ), --how do i unfold properly at this point?
{ intro b b' g, apply equiv_pathover, intro g' g'' H,
refine !transport_rezk_hom_left_pt_eq_comp ⬝op _,
refine !assoc ⬝ ap (λ x, x ∘ _) _, refine eq_of_parallel_po_right _ H,
apply transport_rezk_hom_left_pt_eq_comp },
intro b b' b'' g g', apply @is_prop.elim, apply is_trunc_pathover, apply is_trunc_equiv
end
definition rezk_hom [unfold 3 4] (a b : @rezk_carrier A C) : Set.{k} :=
begin
refine rezk_carrier.elim_set _ _ _ a,
{ clear a, intro a, exact rezk_hom_left_pt a b },
{ clear a, intro a a' f, apply rezk_hom_left_pth a a' f },
{ clear a, intro a a' a'' Ef Eg Rfg, induction b using rezk_carrier.rec,
apply assoc, apply is_prop.elimo, apply is_set.elimo }
end
private definition transport_rezk_hom_left_eq_comp {a b c : A} (f : hom a c) (g : a ≅ b) :
pathover (λ x, rezk_hom x (elt c)) f (pth g) (f ∘ (to_hom g)⁻¹) :=
begin
apply pathover_of_tr_eq, apply @homotopy_of_eq _ _ _ (λ f, f ∘ (to_hom g)⁻¹),
apply rezk_carrier.elim_set_pth,
end
private definition transport_rezk_hom_right_eq_comp {a b c : A} (f : hom a b) (g : b ≅ c) : --todo delete?
pathover (rezk_hom (elt a)) f (pth g) ((to_hom g) ∘ f) :=
begin
apply transport_rezk_hom_left_pt_eq_comp,
end
private definition transport_rezk_hom_eq_comp {a c : A} (f : hom a a) (g : a ≅ c) :
transport (λ x, rezk_hom x x) (pth g) f = (to_hom g) ∘ f ∘ (to_hom g)⁻¹ :=
begin
apply concat, apply tr_diag_eq_tr_tr rezk_hom,
apply concat, apply ap (λ x, _ ▸ x),
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp,
apply tr_eq_of_pathover, apply transport_rezk_hom_left_pt_eq_comp
end
definition rezk_id (a : @rezk_carrier A C) : rezk_hom a a :=
begin
induction a using rezk_carrier.rec,
apply id,
{ apply pathover_of_tr_eq, refine !transport_rezk_hom_eq_comp ⬝ _,
refine (ap (λ x, to_hom f ∘ x) !id_left) ⬝ _, apply right_inverse },
apply is_set.elimo
end
definition rezk_comp_pt_pt [reducible] {c : rezk_carrier} {a b : A}
(g : carrier (rezk_hom (elt b) c))
(f : carrier (rezk_hom (elt a) (elt b))) : carrier (rezk_hom (elt a) c) :=
begin
induction c using rezk_carrier.set_rec with c c c' ic,
exact g ∘ f,
{ apply arrow_pathover_left, intro d,
apply concato !transport_rezk_hom_left_pt_eq_comp, apply pathover_idp_of_eq,
apply concat, apply assoc, apply ap (λ x, x ∘ f),
apply inverse, apply tr_eq_of_pathover, apply transport_rezk_hom_left_pt_eq_comp },
end
definition rezk_comp_pt_pth [reducible] {c : rezk_carrier} {a b b' : A} {ib : iso b b'} :
pathover (λ b, carrier (rezk_hom b c) → carrier (rezk_hom (elt a) b) → carrier (rezk_hom (elt a) c))
(λ g f, rezk_comp_pt_pt g f) (pth ib) (λ g f, rezk_comp_pt_pt g f) :=
begin
apply arrow_pathover_left, intro x,
apply arrow_pathover_left, intro y,
induction c using rezk_carrier.set_rec with c c c' ic,
{ apply pathover_of_eq, apply inverse,
apply concat, apply ap (λ x, rezk_comp_pt_pt x _), apply tr_eq_of_pathover,
apply transport_rezk_hom_left_eq_comp,
apply concat, apply ap (rezk_comp_pt_pt _), apply tr_eq_of_pathover,
apply transport_rezk_hom_left_pt_eq_comp,
refine !assoc ⬝ ap (λ x, x ∘ y) _,
refine !assoc⁻¹ ⬝ _,
refine ap (λ y, x ∘ y) !iso.left_inverse ⬝ _,
apply id_right },
apply @is_prop.elimo
end
definition rezk_comp {a b c : @rezk_carrier A C} (g : rezk_hom b c) (f : rezk_hom a b) :
rezk_hom a c :=
begin
induction a using rezk_carrier.set_rec with a a a' ia,
{ induction b using rezk_carrier.set_rec with b b b' ib,
apply rezk_comp_pt_pt g f, apply rezk_comp_pt_pth },
{ induction b using rezk_carrier.set_rec with b b b' ib,
apply arrow_pathover_left, intro f,
induction c using rezk_carrier.set_rec with c c c' ic,
{ apply concato, apply transport_rezk_hom_left_eq_comp,
apply pathover_idp_of_eq, refine !assoc⁻¹ ⬝ ap (λ x, g ∘ x) _⁻¹,
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp },
apply is_prop.elimo,
apply is_prop.elimo }
end
definition is_set_rezk_hom [instance] (a b : @rezk_carrier A C) : is_set (rezk_hom a b) :=
_
protected definition id_left {a b : @rezk_carrier A C} (f : rezk_hom a b) :
rezk_comp (rezk_id b) f = f :=
begin
induction a using rezk_carrier.prop_rec with a a a' ia,
induction b using rezk_carrier.prop_rec with b b b' ib,
apply id_left,
end
protected definition id_right {a b : @rezk_carrier A C} (f : rezk_hom a b) :
rezk_comp f (rezk_id a) = f :=
begin
induction a using rezk_carrier.prop_rec with a a a' ia,
induction b using rezk_carrier.prop_rec with b b b' ib,
apply id_right,
end
protected definition assoc {a b c d : @rezk_carrier A C} (h : rezk_hom c d)
(g : rezk_hom b c) (f : rezk_hom a b) :
rezk_comp h (rezk_comp g f) = rezk_comp (rezk_comp h g) f :=
begin
induction a using rezk_carrier.prop_rec with a a a' ia,
induction b using rezk_carrier.prop_rec with b b b' ib,
induction c using rezk_carrier.prop_rec with c c c' ic,
induction d using rezk_carrier.prop_rec with d d d' id,
apply assoc,
end
definition rezk_precategory [instance] : precategory (@rezk_carrier A C) :=
precategory.mk rezk_hom @rezk_comp rezk_id @assoc @id_left @id_right
end
definition to_rezk_Precategory.{l k} : Precategory.{l k} → Precategory.{(max l k) k} :=
begin
intro C, apply Precategory.mk (@rezk_carrier (Precategory.carrier C) C),
apply rezk_precategory _ _,
end
definition rezk_embedding (C : Precategory) : functor C (to_rezk_Precategory C) :=
begin
fapply functor.mk, apply elt,
{ intro a b f, exact f },
do 2 (intros; reflexivity)
end
--TODO prove that rezk_embedding is a weak equivalence
section
parameters {A : Type} [C : precategory A]
include C
protected definition elt_iso_of_iso [reducible] {a b : A} (f : a ≅ b) : elt a ≅ elt b :=
begin
fapply iso.mk, apply to_hom f, apply functor.preserve_is_iso (rezk_embedding _)
end
protected definition iso_of_elt_iso [reducible] {a b : A} (f : elt a ≅ elt b) : a ≅ b :=
begin
cases f with f Hf, cases Hf with inv linv rinv,
fapply iso.mk, exact f, fapply is_iso.mk, exact inv, exact linv, exact rinv
end
protected definition iso_of_elt_iso_distrib {a b c : A} (f : elt a ≅ elt b) (g : elt b ≅ elt c) :
iso_of_elt_iso (f ⬝i g) = (iso_of_elt_iso f) ⬝i (iso_of_elt_iso g) :=
begin
cases g with g Hg, cases Hg with invg linvg rinvg,
cases f with f Hf, cases Hf with invf linvf rinvf,
reflexivity
end
protected definition iso_equiv_elt_iso (a b : A) : (a ≅ b) ≃ (elt a ≅ elt b) :=
begin
fapply equiv.MK, apply elt_iso_of_iso, apply iso_of_elt_iso,
{ intro f, cases f with f Hf, cases Hf with inv linv rinv, fapply iso_eq, reflexivity },
{ intro f, fapply iso_eq, reflexivity }
end
private definition hom_transport_eq_transport_hom {a b b' : @rezk_carrier A C} (f : a ≅ b)
(p : b = b') : to_hom (transport (iso a) p f) = transport (λ x, hom _ _) p (to_hom f) :=
by cases p; reflexivity
private definition hom_transport_eq_transport_hom' {a a' b : @rezk_carrier A C} (f : a ≅ b)
(p : a = a') : to_hom (transport (λ x, iso x b) p f) = transport (λ x, hom _ _) p (to_hom f) :=
by cases p; reflexivity
private definition pathover_iso_pth {a b b' : A} (f : elt a ≅ elt b)
(ib : b ≅ b') : pathover (λ x, iso (elt a) x) f (pth ib) (f ⬝i elt_iso_of_iso ib) :=
begin
apply pathover_of_tr_eq, apply iso_eq,
apply concat, apply hom_transport_eq_transport_hom,
apply tr_eq_of_pathover, apply transport_rezk_hom_right_eq_comp A C
end
private definition pathover_iso_pth' {a a' b : A} (f : elt a ≅ elt b)
(ia : a ≅ a') : pathover (λ x, iso x (elt b)) f (pth ia) (elt_iso_of_iso (iso.symm ia) ⬝i f) :=
begin
apply pathover_of_tr_eq, apply iso_eq,
apply concat, apply hom_transport_eq_transport_hom',
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp A C
end
private definition eq_of_iso_pt {a : A} {b : @rezk_carrier A C} :
elt a ≅ b → elt a = b :=
begin
intro f,
induction b using rezk_carrier.set_rec with b b b' ib,
apply pth, apply iso_of_elt_iso f,
apply arrow_pathover, intro f g p, apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹, apply square_of_eq,
refine !resp_comp⁻¹ ⬝ (ap pth _)⁻¹ ⬝ !idp_con⁻¹,
apply concat, apply inverse, apply ap rezk_completion.iso_of_elt_iso,
apply eq_of_parallel_po_right (pathover_iso_pth _ _) p,
apply concat, apply iso_of_elt_iso_distrib,
apply ap (λ x, _ ⬝i x), apply equiv.to_left_inv !iso_equiv_elt_iso
end
protected definition eq_of_iso {a b : @rezk_carrier A C} :
a ≅ b → a = b :=
begin
intro f,
induction a using rezk_carrier.set_rec with a a a' ia,
apply eq_of_iso_pt f,
{ induction b using rezk_carrier.set_rec with b b b' ib,
{ apply arrow_pathover, intro f g p, apply eq_pathover,
refine !ap_id ⬝ph _ ⬝hp !ap_constant⁻¹, apply square_of_eq,
refine (ap pth _) ⬝ !resp_comp,
assert H : g = (elt_iso_of_iso (iso.symm ia) ⬝i f),
apply eq_of_parallel_po_right p (pathover_iso_pth' _ _),
rewrite H, apply inverse,
apply concat, apply ap (λ x, ia ⬝i x), apply iso_of_elt_iso_distrib,
apply concat, apply ap (λ x, _ ⬝i (x ⬝i _)), apply equiv.to_left_inv !iso_equiv_elt_iso,
apply iso_eq, apply inverse_comp_cancel_right },
apply @is_prop.elimo }
end
protected definition eq_of_iso_of_eq (a b : @rezk_carrier A C) (p : a = b) :
eq_of_iso (iso_of_eq p) = p :=
begin
cases p, clear b,
induction a using rezk_carrier.prop_rec,
refine ap pth _ ⬝ !resp_id,
apply iso_eq, reflexivity
end
protected definition iso_of_eq_of_iso (a b : @rezk_carrier A C) (f : a ≅ b) :
iso_of_eq (eq_of_iso f) = f :=
begin
induction a using rezk_carrier.prop_rec with a,
induction b using rezk_carrier.prop_rec with b,
cases f with f Hf, apply iso_eq,
apply concat, apply ap to_hom, apply !transport_iso_of_eq⁻¹,
apply concat, apply ap to_hom, apply tr_eq_of_pathover, apply pathover_iso_pth,
cases Hf with invf linv rinv, apply id_right,
end
end
definition rezk_category.{l k} {A : Type.{l}} [C : precategory.{l k} A] :
category.{(max l k) k} (@rezk_carrier.{l k} A C) :=
begin
fapply category.mk (rezk_precategory A C),
intros, fapply is_equiv.adjointify,
apply rezk_completion.eq_of_iso,
apply rezk_completion.iso_of_eq_of_iso,
apply rezk_completion.eq_of_iso_of_eq
end
end rezk_completion