feat(library/theories): adapt analysis theory to use new topological limits
This commit is contained in:
parent
6f25abfb87
commit
5a439942dd
10 changed files with 1050 additions and 647 deletions
|
@ -6,7 +6,8 @@ Author: Robert Y. Lewis
|
|||
Bounded linear operators
|
||||
-/
|
||||
import .normed_space .real_limit algebra.module algebra.homomorphism
|
||||
open real nat classical topology
|
||||
open real nat classical topology set
|
||||
--open normed_vector_space (this confuses lots of stuff??)
|
||||
noncomputable theory
|
||||
|
||||
namespace analysis
|
||||
|
@ -156,21 +157,60 @@ variables [HV : normed_vector_space V] [HW : normed_vector_space W]
|
|||
include HV HW
|
||||
|
||||
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
|
||||
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
|
||||
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 [at 0]
|
||||
|
||||
lemma diff_quot_cts {f A : V → W} [HA : is_bdd_linear_map A] {y : V} (Hf : is_frechet_deriv_at f A y) :
|
||||
continuous_at (λ h, ∥f (y + h) - f y - A h∥ / ∥h∥) 0 :=
|
||||
begin
|
||||
apply normed_vector_space.continuous_at_intro,
|
||||
intro ε Hε,
|
||||
cases normed_vector_space.approaches_at_dest Hf Hε with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
exact and.left Hδ,
|
||||
intro x' Hx',
|
||||
cases em (x' = 0) with Heq Hneq,
|
||||
{rewrite [Heq, norm_zero, div_zero, sub_zero, norm_zero], apply Hε},
|
||||
{rewrite [norm_zero, div_zero],
|
||||
apply and.right Hδ,
|
||||
repeat assumption}
|
||||
end
|
||||
|
||||
theorem is_bdd_linear_map_of_eq {A B : V → W} [HA : is_bdd_linear_map A] (HAB : A = B) :
|
||||
is_bdd_linear_map B :=
|
||||
begin
|
||||
fapply is_bdd_linear_map.mk,
|
||||
all_goals try rewrite -HAB,
|
||||
{apply hom_add},
|
||||
{apply hom_smul},
|
||||
{exact op_norm A},
|
||||
{exact op_norm_pos A},
|
||||
{rewrite -HAB, apply op_norm_bound}
|
||||
end
|
||||
|
||||
definition is_frechet_deriv_at_of_eq {f A : V → W} [is_bdd_linear_map A] {x : V}
|
||||
(Hfd : is_frechet_deriv_at f A x) {B : V → W} (HAB : A = B) :
|
||||
@is_frechet_deriv_at _ _ _ _ f B (is_bdd_linear_map_of_eq HAB) x :=
|
||||
begin
|
||||
unfold is_frechet_deriv_at,
|
||||
rewrite -HAB,
|
||||
apply Hfd
|
||||
end
|
||||
|
||||
|
||||
theorem is_frechet_deriv_at_intro {f A : V → W} [is_bdd_linear_map A] {x : V}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 →
|
||||
(∃ δ : ℝ, δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε)) :
|
||||
is_frechet_deriv_at f A x :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_at_intro,
|
||||
intros ε Hε,
|
||||
cases H Hε with δ Hδ,
|
||||
cases Hδ with Hδ Hδ',
|
||||
existsi δ,
|
||||
split,
|
||||
assumption,
|
||||
intros x' Hx',
|
||||
cases Hx' with Hx'1 Hx'2,
|
||||
intros x' Hx'1 Hx'2,
|
||||
show abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, begin
|
||||
have H : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0,
|
||||
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||||
|
@ -179,7 +219,7 @@ theorem is_frechet_deriv_at_intro {f A : V → W} [is_bdd_linear_map A] {x : V}
|
|||
split,
|
||||
assumption,
|
||||
rewrite [-sub_zero x'],
|
||||
apply Hx'2
|
||||
apply Hx'1
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -188,14 +228,14 @@ theorem is_frechet_deriv_at_elim {f A : V → W} [is_bdd_linear_map A] {x : V} (
|
|||
(∃ δ : ℝ, δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε) :=
|
||||
begin
|
||||
intros ε Hε,
|
||||
cases H Hε with δ Hδ,
|
||||
cases normed_vector_space.approaches_at_dest H Hε with δ Hδ,
|
||||
cases Hδ with Hδ Hδ',
|
||||
existsi δ,
|
||||
split,
|
||||
assumption,
|
||||
intros x' Hx',
|
||||
rewrite [-sub_zero x' at Hx' {2}],
|
||||
have Hδ'' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, from Hδ' Hx',
|
||||
have Hδ'' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, from Hδ' (and.right Hx') (and.left Hx'),
|
||||
have Hpos : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0, from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||||
rewrite [sub_zero at Hδ'', abs_of_nonneg Hpos at Hδ''],
|
||||
assumption
|
||||
|
@ -215,22 +255,36 @@ definition frechet_deriv_at_is_bdd_linear_map [instance] (f : V → W) (x : V) [
|
|||
frechet_diffable_at.HA _ _ f x
|
||||
|
||||
theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
|
||||
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
|
||||
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 [at 0] :=
|
||||
frechet_diffable_at.is_fr_der _ _ f x
|
||||
|
||||
theorem frechet_deriv_at_const (w : W) : is_frechet_deriv_at (λ v : V, w) (λ v : V, 0) x :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_at_intro,
|
||||
intros ε Hε,
|
||||
existsi 1,
|
||||
split,
|
||||
exact zero_lt_one,
|
||||
intros x' Hx',
|
||||
rewrite [sub_self, sub_zero, norm_zero],
|
||||
krewrite [zero_div, dist_self],
|
||||
intros x' Hx' _,
|
||||
rewrite [2 sub_self, norm_zero],
|
||||
krewrite [zero_div, sub_zero, norm_zero],
|
||||
assumption
|
||||
end
|
||||
|
||||
theorem frechet_deriv_at_smul {c : ℝ} {A : V → W} [is_bdd_linear_map A]
|
||||
theorem frechet_deriv_at_id : is_frechet_deriv_at (λ v : V, v) (λ v : V, v) x :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_at_intro,
|
||||
intros ε Hε,
|
||||
existsi 1,
|
||||
split,
|
||||
exact zero_lt_one,
|
||||
intros x' Hx' _,
|
||||
have x + x' - x - x' = 0, by simp,
|
||||
rewrite [this, norm_zero, zero_div, sub_self, norm_zero],
|
||||
exact Hε
|
||||
end
|
||||
|
||||
theorem frechet_deriv_at_smul (c : ℝ) {A : V → W} [is_bdd_linear_map A]
|
||||
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, c • f y) (λ y, c • A y) x :=
|
||||
begin
|
||||
eapply @decidable.cases_on (abs c = 0),
|
||||
|
@ -240,31 +294,32 @@ theorem frechet_deriv_at_smul {c : ℝ} {A : V → W} [is_bdd_linear_map A]
|
|||
have Hfz : (λ y : V, (0 : ℝ) • f y) = (λ y : V, 0), from funext (λ y, !zero_smul),
|
||||
--have Hfz' : (λ x : V, (0 : ℝ) • A x) = (λ x : V, 0), from funext (λ y, !zero_smul),
|
||||
-- rewriting Hfz' produces type-incorrect term
|
||||
rewrite [Hz, Hfz, ↑is_frechet_deriv_at],
|
||||
rewrite [Hz, Hfz],
|
||||
apply metric_space.approaches_at_intro,
|
||||
intro ε Hε,
|
||||
existsi 1,
|
||||
split,
|
||||
exact zero_lt_one,
|
||||
intro x' Hx',
|
||||
intro x' Hx' _,
|
||||
rewrite [zero_smul, *sub_zero, norm_zero],
|
||||
krewrite [zero_div, dist_self],
|
||||
exact Hε},
|
||||
intro Hcnz,
|
||||
rewrite ↑is_frechet_deriv_at,
|
||||
apply normed_vector_space.approaches_at_intro,
|
||||
intros ε Hε,
|
||||
have Hεc : ε / abs c > 0, from div_pos_of_pos_of_pos Hε (lt_of_le_of_ne !abs_nonneg (ne.symm Hcnz)),
|
||||
cases Hf Hεc with δ Hδ,
|
||||
cases normed_vector_space.approaches_at_dest Hf Hεc with δ Hδ,
|
||||
cases Hδ with Hδp Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
assumption,
|
||||
intro x' Hx',
|
||||
intro x' Hx' _,
|
||||
show abs ((∥c • f (x + x') - c • f x - c • A x'∥ / ∥x'∥ - 0)) < ε, begin
|
||||
rewrite [sub_zero, -2 smul_sub_left_distrib, norm_smul],
|
||||
krewrite mul_div_assoc,
|
||||
rewrite [abs_mul, abs_abs, -{ε}mul_div_cancel' Hcnz],
|
||||
apply mul_lt_mul_of_pos_left,
|
||||
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx',
|
||||
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx' a,
|
||||
rewrite sub_zero at Hδ',
|
||||
apply Hδ',
|
||||
apply lt_of_le_of_ne,
|
||||
|
@ -309,17 +364,19 @@ theorem frechet_deriv_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linea
|
|||
krewrite [Hhe, *div_zero, zero_add],
|
||||
eapply le.refl
|
||||
end,
|
||||
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 at 0, begin
|
||||
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 [at 0], begin
|
||||
rewrite [-zero_add 0],
|
||||
apply add_converges_to_at,
|
||||
apply add_approaches,
|
||||
apply Hf,
|
||||
apply Hg
|
||||
end,
|
||||
have Hlimle : (λ (h : V), (0 : ℝ)) ⟶ 0 at 0, from converges_to_at_constant 0 0,
|
||||
apply converges_to_at_squeeze Hlimle Hlimge,
|
||||
have Hlimle : (λ (h : V), (0 : ℝ)) ⟶ 0 [at 0], by apply approaches_constant,
|
||||
apply approaches_squeeze Hlimle Hlimge,
|
||||
apply filter.eventually_of_forall,
|
||||
intro y,
|
||||
apply div_nonneg_of_nonneg_of_nonneg,
|
||||
repeat apply norm_nonneg,
|
||||
apply filter.eventually_of_forall,
|
||||
apply Hle
|
||||
end
|
||||
|
||||
|
@ -329,7 +386,7 @@ theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous
|
|||
begin
|
||||
apply normed_vector_space.continuous_at_intro,
|
||||
intros ε Hε,
|
||||
note Hfds := frechet_deriv_spec f x Hε,
|
||||
note Hfds := normed_vector_space.approaches_at_dest (frechet_deriv_spec f x) Hε,
|
||||
cases Hfds with δ Hδ,
|
||||
cases Hδ with Hδ Hδ',
|
||||
existsi min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))),
|
||||
|
@ -343,15 +400,15 @@ theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous
|
|||
{intro x' Hx',
|
||||
cases em (x' - x = 0) with Heq Hneq,
|
||||
rewrite [eq_of_sub_eq_zero Heq, sub_self, norm_zero], assumption,
|
||||
have Hx'x : x' - x ≠ 0 ∧ dist (x' - x) 0 < δ, from and.intro Hneq begin
|
||||
change ∥(x' - x) - 0∥ < δ,
|
||||
have Hx'x : x' - x ≠ 0 ∧ ∥(x' - x) - 0∥ < δ, from and.intro Hneq begin
|
||||
rewrite sub_zero,
|
||||
apply lt_of_lt_of_le,
|
||||
apply Hx',
|
||||
apply min_le_left
|
||||
end,
|
||||
have Hx'xp : ∥x' - x∥ > 0, from norm_pos_of_ne_zero Hneq,
|
||||
have Hδ'' : abs (∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ - 0) < ε, from Hδ' Hx'x,
|
||||
have Hδ'' : abs (∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ - 0) < ε,
|
||||
from Hδ' (and.right Hx'x) (and.left Hx'x),
|
||||
have Hnn : ∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ ≥ 0,
|
||||
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||||
rewrite [sub_zero at Hδ'', abs_of_nonneg Hnn at Hδ'', add.comm at Hδ'', sub_add_cancel at Hδ''],
|
||||
|
@ -378,9 +435,31 @@ theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous
|
|||
... < ε / 2 : mul_div_add_self_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos}
|
||||
end
|
||||
|
||||
theorem continuous_at_of_is_frechet_deriv_at {A : V → W} [is_bdd_linear_map A]
|
||||
(H : is_frechet_deriv_at f A x) : continuous_at f x :=
|
||||
begin
|
||||
apply @continuous_at_of_diffable_at,
|
||||
existsi A,
|
||||
exact H
|
||||
end
|
||||
|
||||
end frechet_deriv
|
||||
|
||||
/-section comp
|
||||
section comp
|
||||
|
||||
lemma div_mul_div_cancel {A : Type} [field A] (a b : A) {c : A} (Hc : c ≠ 0) : (a / c) * (c / b) = a / b :=
|
||||
by rewrite [-mul_div_assoc, div_mul_cancel _ Hc]
|
||||
|
||||
lemma div_add_eq_add_mul_div {A : Type} [field A] (a b c : A) (Hb : b ≠ 0) : (a / b) + c = (a + c * b) / b :=
|
||||
by rewrite [-div_add_div_same, mul_div_cancel _ Hb]
|
||||
|
||||
-- I'm not sure why smul_approaches doesn't unify where I use this?
|
||||
lemma real_limit_helper {U : Type} [normed_vector_space U] {f : U → ℝ} {a : ℝ} {x : U}
|
||||
(Hf : f ⟶ a [at x]) (c : ℝ) : (λ y, c * f y) ⟶ c * a [at x] :=
|
||||
begin
|
||||
apply smul_approaches,
|
||||
exact Hf
|
||||
end
|
||||
|
||||
variables {U V W : Type}
|
||||
variables [HU : normed_vector_space U] [HV : normed_vector_space V] [HW : normed_vector_space W]
|
||||
|
@ -388,15 +467,122 @@ variables {f : V → W} {g : U → V}
|
|||
variables {A : V → W} {B : U → V}
|
||||
variables [HA : is_bdd_linear_map A] [HB : is_bdd_linear_map B]
|
||||
variable {x : U}
|
||||
|
||||
include HU HV HW HA HB
|
||||
|
||||
-- this takes 2 seconds without clearing the contexts before simp
|
||||
theorem frechet_derivative_at_comp (Hg : is_frechet_deriv_at g B x) (Hf : is_frechet_deriv_at f A (g x)) :
|
||||
@is_frechet_deriv_at _ _ _ _ (λ y, f (g y)) (λ y, A (B y)) !is_bdd_linear_map_comp x :=
|
||||
begin
|
||||
rewrite ↑is_frechet_deriv_at,
|
||||
intros ε Hε,
|
||||
unfold is_frechet_deriv_at,
|
||||
note Hf' := is_frechet_deriv_at_elim Hf,
|
||||
note Hg' := is_frechet_deriv_at_elim Hg,
|
||||
have H : ∀ h, f (g (x + h)) - f (g x) - A (B h) =
|
||||
(A (g (x + h) - g x - B h)) + (-f (g x) + f (g (x + h)) + A (g x - g (x + h))),
|
||||
begin intro; rewrite [3 hom_sub A], clear [Hf, Hg, Hf', Hg'], simp end, -- .5 seconds for simp
|
||||
have H' : (λ h, ∥f (g (x + h)) - f (g x) - A (B h)∥ / ∥h∥) =
|
||||
(λ h, ∥(A (g (x + h) - g x - B h)) + (-f (g x) + f (g (x + h)) + A (g x - g (x + h)))∥ / ∥h∥),
|
||||
from funext (λ h, by rewrite H),
|
||||
rewrite H',
|
||||
clear [H, H'],
|
||||
apply approaches_squeeze, -- show the limit holds by bounding it by something that vanishes
|
||||
{apply approaches_constant},
|
||||
rotate 1,
|
||||
{apply filter.eventually_of_forall, intro, apply div_nonneg_of_nonneg_of_nonneg, repeat apply norm_nonneg},
|
||||
{apply filter.eventually_of_forall, intro,
|
||||
apply div_le_div_of_le_of_nonneg,
|
||||
apply norm_triangle,
|
||||
apply norm_nonneg},
|
||||
have H : (λ (y : U), (∥A (g (x + y) - g x - B y)∥ + ∥-f (g x) + f (g (x + y)) + A (g x - g (x + y))∥) / ∥y∥) =
|
||||
(λ (y : U), (∥A (g (x + y) - g x - B y)∥ / ∥y∥ + ∥-f (g x) + f (g (x + y)) + A (g x - g (x + y))∥ / ∥y∥)),
|
||||
from funext (λ y, by rewrite [div_add_div_same]),
|
||||
rewrite [H, -zero_add 0], -- the function is a sum of two things that both vanish
|
||||
clear H,
|
||||
apply add_approaches,
|
||||
{apply approaches_squeeze, -- show the lhs vanishes by squeezing it again
|
||||
{apply approaches_constant},
|
||||
rotate 1,
|
||||
{apply filter.eventually_of_forall, intro, apply div_nonneg_of_nonneg_of_nonneg, repeat apply norm_nonneg},
|
||||
{apply filter.eventually_of_forall, intro y,
|
||||
show ∥A (g (x + y) - g x - B y)∥ / ∥y∥ ≤ op_norm A * (∥(g (x + y) - g x - B y)∥ / ∥y∥), begin
|
||||
rewrite -mul_div_assoc,
|
||||
apply div_le_div_of_le_of_nonneg,
|
||||
apply op_norm_bound A,
|
||||
apply norm_nonneg
|
||||
end},
|
||||
{rewrite [-mul_zero (op_norm A)],
|
||||
apply real_limit_helper,
|
||||
apply Hg}}, -- we have shown the lhs vanishes. now the rhs
|
||||
{have H : ∀ y, (∥-f (g x) + f (g (x + y)) + A (g x - g (x + y))∥ / ∥y∥) =
|
||||
((∥(f (g (x + y)) - f (g x)) - A (g (x + y) - g x) ∥ / ∥g (x + y) - g x∥) * (∥g (x + y) - g x∥ / ∥y∥)),
|
||||
begin
|
||||
intro,
|
||||
cases em (g (x + y) - g x = 0) with Heq Hneq,
|
||||
{note Heq' := eq_of_sub_eq_zero Heq,
|
||||
rewrite [Heq', neg_add_eq_sub, *sub_self, hom_zero A, add_zero, *norm_zero, div_zero, zero_div]},
|
||||
{rewrite [div_mul_div_cancel _ _ (norm_ne_zero_of_ne_zero Hneq), *sub_eq_add_neg,
|
||||
-hom_neg A],
|
||||
simp} --(.5 seconds)
|
||||
end,
|
||||
apply approaches_squeeze, -- again, by squeezing
|
||||
{apply approaches_constant},
|
||||
rotate 1,
|
||||
{apply filter.eventually_of_forall, intro, apply div_nonneg_of_nonneg_of_nonneg, repeat apply norm_nonneg},
|
||||
{apply filter.eventually_of_forall, intro y, rewrite H,
|
||||
apply mul_le_mul_of_nonneg_left,
|
||||
{show ∥g (x + y) - g x∥ / ∥y∥ ≤ ∥g (x + y) - g x - B y∥ / ∥y∥ + op_norm B, begin
|
||||
cases em (y = 0) with Heq Hneq,
|
||||
{rewrite [Heq, norm_zero, *div_zero, zero_add], apply le_of_lt, apply op_norm_pos},
|
||||
rewrite [div_add_eq_add_mul_div _ _ _ (norm_ne_zero_of_ne_zero Hneq)],
|
||||
apply div_le_div_of_le_of_nonneg,
|
||||
apply le.trans,
|
||||
rotate 1,
|
||||
apply add_le_add_left,
|
||||
apply op_norm_bound,
|
||||
apply norm_nonneg,
|
||||
rewrite [-neg_add_cancel_right (g (x + y) - g x) (B y) at {1}, -sub_eq_add_neg],
|
||||
apply norm_triangle
|
||||
end},
|
||||
{apply div_nonneg_of_nonneg_of_nonneg, repeat apply norm_nonneg}},
|
||||
-- now to show the bounding function vanishes. it is a product of a vanishing function and a convergent one
|
||||
apply mul_approaches_zero_of_approaches_zero_of_approaches,
|
||||
{have H' : (λ (y : U), ∥f (g (x + y)) - f (g x) - A (g (x + y) - g x)∥ / ∥g (x + y) - g x∥) =
|
||||
(λ (y : U), ∥f (g x + (g (x + y) - g x)) - f (g x) - A (g (x + y) - g x)∥ / ∥g (x + y) - g x∥),
|
||||
from funext (λ y, by rewrite [add.comm (g x), sub_add_cancel]), -- first, show lhs vanishes
|
||||
rewrite H',
|
||||
have Hgcts : continuous_at (λ y, g (x + y) - g x) 0, begin
|
||||
apply normed_vector_space.continuous_at_intro,
|
||||
intro ε Hε,
|
||||
cases normed_vector_space.continuous_at_dest (continuous_at_of_is_frechet_deriv_at g x Hg) _ Hε with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
exact and.left Hδ,
|
||||
intro x' Hx',
|
||||
rewrite [add_zero, sub_self],
|
||||
rewrite sub_zero,
|
||||
apply and.right Hδ,
|
||||
have (x + x') - x = x' - 0, begin clear [Hg, Hf, Hf', Hg', H, H', Hδ, Hx'], simp end, -- (.6 seconds w/o clear, .1 with)
|
||||
rewrite this,
|
||||
apply Hx'
|
||||
end,
|
||||
have Hfcts : continuous_at (λ (x' : V), ∥f (g x + x') - f (g x) - A x'∥ / ∥x'∥) (g (x + 0) - g x), begin
|
||||
rewrite [add_zero, sub_self],
|
||||
apply diff_quot_cts,
|
||||
exact Hf
|
||||
end,
|
||||
have Heqz : ∥f (g x + (g (x + 0) - g x)) - f (g x) - A (g (x + 0) - g x)∥ / ∥g (x + 0) - g x∥ = 0,
|
||||
by rewrite [*add_zero, sub_self, norm_zero, div_zero],
|
||||
apply @tendsto_comp _ _ _ (λ y, g (x + y) - g x),
|
||||
apply tendsto_inf_left,
|
||||
apply tendsto_at_of_continuous_at Hgcts,
|
||||
note Hfcts' := tendsto_at_of_continuous_at Hfcts,
|
||||
rewrite Heqz at Hfcts',
|
||||
exact Hfcts'}, -- finally, show rhs converges to op_norm B
|
||||
{apply add_approaches,
|
||||
apply Hg,
|
||||
apply approaches_constant}}
|
||||
end
|
||||
|
||||
end comp-/
|
||||
end comp
|
||||
|
||||
end analysis
|
||||
|
|
|
@ -204,7 +204,7 @@ theorem intermediate_value_decr_zero {f : ℝ → ℝ} (Hf : continuous f) {a b
|
|||
begin
|
||||
have Ha' : - f a < 0, from neg_neg_of_pos Ha,
|
||||
have Hb' : - f b > 0, from neg_pos_of_neg Hb,
|
||||
have Hcon : continuous (λ x, - f x), from continuous_neg_of_continuous Hf,
|
||||
have Hcon : continuous (λ x, - f x), from neg_continuous Hf,
|
||||
let Hiv := intermediate_value_incr_zero Hcon Hab Ha' Hb',
|
||||
cases Hiv with c Hc,
|
||||
existsi c,
|
||||
|
@ -220,7 +220,7 @@ theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ
|
|||
(Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||||
have Hav' : f a - v < 0, from sub_neg_of_lt Hav,
|
||||
have Hbv' : f b - v > 0, from sub_pos_of_lt Hbv,
|
||||
have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _,
|
||||
have Hcon : continuous (λ x, f x - v), from sub_continuous Hf (continuous_const _),
|
||||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv',
|
||||
obtain c Hc, from Hiv,
|
||||
exists.intro c
|
||||
|
@ -230,7 +230,7 @@ theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ
|
|||
(Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||||
have Hav' : f a - v > 0, from sub_pos_of_lt Hav,
|
||||
have Hbv' : f b - v < 0, from sub_neg_of_lt Hbv,
|
||||
have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _,
|
||||
have Hcon : continuous (λ x, f x - v), from sub_continuous Hf (continuous_const _),
|
||||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv',
|
||||
obtain c Hc, from Hiv,
|
||||
exists.intro c
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Metric spaces.
|
||||
|
||||
Authors: Jeremy Avigad, Robert Y. Lewis
|
||||
-/
|
||||
import data.real.complete data.pnat ..topology.continuous ..topology.limit data.set
|
||||
open nat real eq.ops classical set prod set.filter topology interval
|
||||
|
@ -215,6 +217,11 @@ proposition eventually_at_iff (P : M → Prop) (x : M) :
|
|||
eventually P [at x] ↔ ∃ ε, ε > 0 ∧ ∀ ⦃x'⦄, dist x' x < ε → x' ≠ x → P x' :=
|
||||
iff.intro eventually_at_dest (λ H, obtain ε [εpos Hε], from H, eventually_at_intro εpos Hε)
|
||||
|
||||
end metric_space_M
|
||||
|
||||
namespace metric_space
|
||||
variables {M : Type} [metric_space M]
|
||||
|
||||
section approaches
|
||||
variables {X : Type} {F : filter X} {f : X → M} {y : M}
|
||||
|
||||
|
@ -236,13 +243,11 @@ section approaches
|
|||
proposition approaches_iff : (f ⟶ y) F ↔ (∀ ε, ε > 0 → eventually (λ x, dist (f x) y < ε) F) :=
|
||||
iff.intro approaches_dest approaches_intro
|
||||
|
||||
-- TODO: prove this in greater generality in topology.limit
|
||||
proposition approaches_constant : ((λ x, y) ⟶ y) F :=
|
||||
approaches_intro (λ ε εpos, eventually_of_forall F (λ x,
|
||||
show dist y y < ε, by rewrite dist_self; apply εpos))
|
||||
end approaches
|
||||
|
||||
-- here we full unwrap two particular kinds of convergence3
|
||||
-- TODO: put these in metric space namespace? (will have similar in normed_space
|
||||
|
||||
|
||||
proposition approaches_at_infty_intro {f : ℕ → M} {y : M}
|
||||
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → dist (f n) y < ε) :
|
||||
|
@ -282,8 +287,13 @@ proposition approaches_at_iff (f : M → N) (y : N) (x : M) : f ⟶ y [at x] ↔
|
|||
iff.intro approaches_at_dest approaches_at_intro
|
||||
|
||||
end metric_space_N
|
||||
end metric_space -- close namespace
|
||||
|
||||
-- TODO: remove this. It is only here temporarily, because it is used in normed_space
|
||||
section metric_space_M
|
||||
variables {M : Type} [metric_space M]
|
||||
-- TODO: remove this. It is only here temporarily, because it is used in normed_space (JA)
|
||||
-- It is used in the definition of a complete metric space below, but I think it doesn't
|
||||
-- have to be a class (RL)
|
||||
abbreviation converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y [at ∞]
|
||||
|
||||
-- TODO: refactor
|
||||
|
@ -291,7 +301,7 @@ abbreviation converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y [at
|
|||
definition approaches_at_infty_intro' {X : ℕ → M} {y : M}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
|
||||
(X ⟶ y) [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
metric_space.approaches_at_infty_intro
|
||||
take ε, assume epos : ε > 0,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||
obtain N HN, from H e2pos,
|
||||
|
@ -308,9 +318,9 @@ eq_of_forall_dist_le
|
|||
(take ε, suppose ε > 0,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2),
|
||||
from approaches_at_infty_dest H₁ e2pos,
|
||||
from metric_space.approaches_at_infty_dest H₁ e2pos,
|
||||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2),
|
||||
from approaches_at_infty_dest H₂ e2pos,
|
||||
from metric_space.approaches_at_infty_dest H₂ e2pos,
|
||||
let N := max N₁ N₂ in
|
||||
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
|
||||
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
|
||||
|
@ -347,11 +357,10 @@ have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrit
|
|||
by rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
|
||||
-/
|
||||
|
||||
--<<<<<<< HEAD
|
||||
proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x [at ∞]) :
|
||||
∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K :=
|
||||
have eventually (λ n, dist (X n) x < 1) [at ∞],
|
||||
from approaches_dest H zero_lt_one,
|
||||
from metric_space.approaches_dest H zero_lt_one,
|
||||
obtain N (HN : ∀ n, n ≥ N → dist (X n) x < 1),
|
||||
from eventually_at_infty_dest this,
|
||||
let K := max 1 (Max i ∈ '(-∞, N), dist (X i) x) in
|
||||
|
@ -363,12 +372,22 @@ proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x [at
|
|||
else
|
||||
show dist (X n) x ≤ K,
|
||||
from le.trans (le_of_lt (HN n (le_of_not_gt Hn))) !le_max_left)
|
||||
--=======
|
||||
/-proposition converges_to_seq_of_converges_to_seq_offset_succ
|
||||
{X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) :
|
||||
X ⟶ y in ℕ :=
|
||||
@converges_to_seq_of_converges_to_seq_offset M _ X y 1 H
|
||||
|
||||
proposition bounded_of_converges {A : Type} {X : A → M} {x : M} {F} (H : (X ⟶ x) F) :
|
||||
∃ K : ℝ, eventually (λ n, dist (X n) x ≤ K) F :=
|
||||
begin
|
||||
note H' := metric_space.approaches_dest H zero_lt_one,
|
||||
existsi 1,
|
||||
apply eventually_mono H',
|
||||
intro x' Hx',
|
||||
apply le_of_lt Hx'
|
||||
end
|
||||
|
||||
/-proposition converges_to_seq_of_converges_to_seq_offset_succ
|
||||
{X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y [at ∞]) :
|
||||
X ⟶ y [at ∞] :=
|
||||
@converges_to_seq_of_converges_to_seq_offset M _ X y 1 H-/
|
||||
/-
|
||||
proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) :
|
||||
((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||||
iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset
|
||||
|
@ -380,49 +399,7 @@ iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_off
|
|||
proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) :
|
||||
((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||||
iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ
|
||||
|
||||
section
|
||||
open list
|
||||
private definition r_trans : transitive (@le ℝ _) := λ a b c, !le.trans
|
||||
private definition r_refl : reflexive (@le ℝ _) := λ a, !le.refl
|
||||
|
||||
proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x in ℕ) :
|
||||
∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K :=
|
||||
begin
|
||||
cases H zero_lt_one with N HN,
|
||||
cases em (N = 0),
|
||||
existsi 1,
|
||||
intro n,
|
||||
apply le_of_lt,
|
||||
apply HN,
|
||||
rewrite a,
|
||||
apply zero_le,
|
||||
let l := map (λ n : ℕ, -dist (X n) x) (upto N),
|
||||
have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)),
|
||||
existsi max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1,
|
||||
intro n,
|
||||
have Hsmn : ∀ m : ℕ, m < N → dist (X m) x ≤ max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, begin
|
||||
intro m Hm,
|
||||
apply le.trans,
|
||||
rotate 1,
|
||||
apply le_max_left,
|
||||
note Hall := min_lemma real.le_total r_trans r_refl Hnenil,
|
||||
have Hmem : -dist (X m) x ∈ (map (λ (n : ℕ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm),
|
||||
note Hallm' := of_mem_of_all Hmem Hall,
|
||||
apply le_neg_of_le_neg,
|
||||
exact Hallm'
|
||||
end,
|
||||
cases em (n < N) with Elt Ege,
|
||||
apply Hsmn,
|
||||
exact Elt,
|
||||
apply le_of_lt,
|
||||
apply lt_of_lt_of_le,
|
||||
apply HN,
|
||||
apply le_of_not_gt Ege,
|
||||
apply le_max_right
|
||||
end
|
||||
end
|
||||
>>>>>>> feat(library/analysis): basic properties about real derivatives-/
|
||||
-/
|
||||
|
||||
/- cauchy sequences -/
|
||||
|
||||
|
@ -433,7 +410,7 @@ proposition cauchy_of_converges_seq {X : ℕ → M} (H : ∃ y, X ⟶ y [at ∞]
|
|||
take ε, suppose ε > 0,
|
||||
obtain y (Hy : X ⟶ y [at ∞]), from H,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||
have eventually (λ n, dist (X n) y < ε / 2) [at ∞], from approaches_dest Hy e2pos,
|
||||
have eventually (λ n, dist (X n) y < ε / 2) [at ∞], from metric_space.approaches_dest Hy e2pos,
|
||||
obtain N (HN : ∀ {n}, n ≥ N → dist (X n) y < ε / 2), from eventually_at_infty_dest this,
|
||||
exists.intro N
|
||||
(take m n, suppose m ≥ N, suppose n ≥ N,
|
||||
|
@ -452,41 +429,10 @@ end metric_space_M
|
|||
section metric_space_M_N
|
||||
variables {M N : Type} [metric_space M] [metric_space N]
|
||||
|
||||
/-
|
||||
definition converges_to_at (f : M → N) (y : N) (x : M) :=
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
|
||||
|
||||
notation f `⟶` y `at` x := converges_to_at f y x
|
||||
|
||||
theorem converges_to_at_constant (y : N) (x : M) : (λ m, y) ⟶ y at x :=
|
||||
begin
|
||||
intros ε Hε,
|
||||
existsi 1,
|
||||
split,
|
||||
exact zero_lt_one,
|
||||
intros x' Hx',
|
||||
rewrite dist_self,
|
||||
apply Hε
|
||||
end
|
||||
|
||||
definition converges_at [class] (f : M → N) (x : M) :=
|
||||
∃ y, converges_to_at f y x
|
||||
|
||||
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
|
||||
some H
|
||||
|
||||
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
|
||||
(f ⟶ limit_at f x at x) :=
|
||||
some_spec H
|
||||
|
||||
-/
|
||||
|
||||
-- TODO: refactor
|
||||
section
|
||||
open pnat rat
|
||||
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
|
||||
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
|
||||
rfl
|
||||
|
||||
theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n) c < 1 / (real.of_nat n + 1)) :
|
||||
∀ ε : ℝ, ε > 0 → ∃ N : ℕ, ∀ n : ℕ, n ≥ N → dist (X n) c < ε :=
|
||||
|
@ -512,51 +458,33 @@ theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n)
|
|||
krewrite -of_rat_zero,
|
||||
apply of_rat_lt_of_rat_of_lt,
|
||||
apply rat_of_pnat_is_pos,
|
||||
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
|
||||
change of_nat (nat_of_pnat p) ≤ n + 1,
|
||||
krewrite [-real.of_nat_add],
|
||||
apply real.of_nat_le_of_nat_of_le,
|
||||
apply le_add_of_le_right,
|
||||
assumption
|
||||
end
|
||||
end
|
||||
|
||||
-- a nice illustration of the limit library: [at c] and [at ∞] can be replaced by any filters
|
||||
theorem comp_approaches_at_infty {f : M → N} {c : M} {l : N} (Hf : f ⟶ l [at c])
|
||||
{X : ℕ → M} (HX₁ : X ⟶ c [at ∞]) (HX₂ : eventually (λ n, X n ≠ c) [at ∞]) :
|
||||
(λ n, f (X n)) ⟶ l [at ∞] :=
|
||||
tendsto_comp_of_approaches_of_tendsto_at HX₁ HX₂ Hf
|
||||
|
||||
-- TODO: refactor
|
||||
|
||||
-- TODO : refactor
|
||||
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
||||
(Hseq : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c [at ∞])) → ((λ n : ℕ, f (X n)) ⟶ l [at ∞])))
|
||||
(Hseq : ∀ X : ℕ → M, (eventually (λ n, X n ≠ c) [at ∞] ∧ (X ⟶ c [at ∞])) → ((λ n : ℕ, f (X n)) ⟶ l [at ∞]))
|
||||
: f ⟶ l [at c] :=
|
||||
by_contradiction
|
||||
(assume Hnot : ¬ (f ⟶ l [at c]),
|
||||
obtain ε Hε, from exists_not_of_not_forall (λ H, Hnot (approaches_at_intro H)),
|
||||
let Hε' := and_not_of_not_implies Hε in
|
||||
obtain (H1 : ε > 0) H2, from Hε',
|
||||
have H3 : ∀ δ : ℝ, (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
|
||||
intros δ Hδ,
|
||||
note Hε'' := forall_not_of_not_exists H2,
|
||||
note H4 := forall_not_of_not_exists H2 δ,
|
||||
have ¬ (∀ x' : M, dist x' c < δ → x' ≠ c → dist (f x') l < ε),
|
||||
from λ H', H4 (and.intro Hδ H'),
|
||||
note H5 := exists_not_of_not_forall this,
|
||||
cases H5 with x' Hx',
|
||||
begin
|
||||
eapply by_contradiction,
|
||||
intro Hnot,
|
||||
cases exists_not_of_not_forall (λ H, Hnot (metric_space.approaches_at_intro H)) with ε Hε,
|
||||
cases and_not_of_not_implies Hε with H1 H2,
|
||||
note H3' := forall_not_of_not_exists H2,
|
||||
have H3 : ∀ δ, δ > 0 → (∃ x', dist x' c < δ ∧ x' ≠ c ∧ dist (f x') l ≥ ε), begin
|
||||
intro δ Hδ,
|
||||
cases exists_not_of_not_forall (or.resolve_left (not_or_not_of_not_and' (H3' δ)) (not_not_intro Hδ))
|
||||
with x' Hx',
|
||||
existsi x',
|
||||
note H6 := and_not_of_not_implies Hx',
|
||||
-- rewrite and.assoc at H6,
|
||||
cases H6 with H6a H6b,
|
||||
split,
|
||||
cases (and_not_of_not_implies H6b),
|
||||
assumption,
|
||||
split,
|
||||
assumption,
|
||||
apply le_of_not_gt,
|
||||
cases (and_not_of_not_implies H6b),
|
||||
assumption
|
||||
rewrite [2 not_implies_iff_and_not at Hx', ge_iff_not_lt],
|
||||
exact Hx'
|
||||
end,
|
||||
let S : ℕ → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
|
||||
let S := λ (n : ℕ) (x : M), 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε,
|
||||
have HS : ∀ n : ℕ, ∃ m : M, S n m, begin
|
||||
intro k,
|
||||
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
|
||||
|
@ -571,29 +499,29 @@ theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
|||
split,
|
||||
repeat assumption
|
||||
end,
|
||||
let X : ℕ → M := λ n, some (HS n) in
|
||||
have H4 : ∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c [at ∞]), from
|
||||
(take n, and.intro
|
||||
(begin
|
||||
let X := λ n, some (HS n),
|
||||
have H4 : (eventually (λ n, X n ≠ c) [at ∞]) ∧ (X ⟶ c [at ∞]), begin
|
||||
split,
|
||||
{fapply @eventually_at_infty_intro,
|
||||
exact 0,
|
||||
intro n Hn,
|
||||
note Hspec := some_spec (HS n),
|
||||
esimp, esimp at Hspec,
|
||||
cases Hspec,
|
||||
apply ne_of_dist_pos,
|
||||
assumption
|
||||
end)
|
||||
(begin
|
||||
apply approaches_at_infty_intro,
|
||||
assumption},
|
||||
{intro,
|
||||
apply metric_space.approaches_at_infty_intro,
|
||||
apply cnv_real_of_cnv_nat,
|
||||
intro m,
|
||||
note Hspec := some_spec (HS m),
|
||||
esimp, esimp at Hspec,
|
||||
cases Hspec with Hspec1 Hspec2,
|
||||
cases Hspec2,
|
||||
assumption
|
||||
end)),
|
||||
have H5 : (λ n : ℕ, f (X n)) ⟶ l [at ∞], from Hseq X H4,
|
||||
begin
|
||||
note H6 := approaches_at_infty_dest H5 H1,
|
||||
assumption}
|
||||
end,
|
||||
have H5 : (λ n, f (X n)) ⟶ l [at ∞], from Hseq X H4,
|
||||
note H6 := metric_space.approaches_at_infty_dest H5 H1,
|
||||
cases H6 with Q HQ,
|
||||
note HQ' := HQ !le.refl,
|
||||
esimp at HQ',
|
||||
|
@ -604,22 +532,24 @@ theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
|||
cases H7 with H71 H72,
|
||||
cases H72,
|
||||
assumption
|
||||
end)
|
||||
end
|
||||
|
||||
end metric_space_M_N
|
||||
|
||||
namespace metric_space
|
||||
|
||||
section continuity
|
||||
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
|
||||
include Hm Hn
|
||||
open topology set
|
||||
|
||||
-- the ε - δ definition of continuity is equivalent to the topological definition
|
||||
theorem continuous_at_intro {f : M → N} {x : M}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at f x :=
|
||||
|
||||
theorem continuous_at_within_intro {f : M → N} {x : M} {s : set M}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at_on f x s :=
|
||||
begin
|
||||
rewrite ↑continuous_at,
|
||||
intros U Uopen HfU,
|
||||
intro U Uopen HfU,
|
||||
cases exists_open_ball_subset_of_Open_of_mem Uopen HfU with r Hr,
|
||||
cases Hr with Hr HUr,
|
||||
cases H Hr with δ Hδ,
|
||||
|
@ -633,15 +563,15 @@ theorem continuous_at_intro {f : M → N} {x : M}
|
|||
intro y Hy,
|
||||
apply mem_preimage,
|
||||
apply HUr,
|
||||
note Hy'' := Hx'δ Hy,
|
||||
exact Hy''
|
||||
apply Hx'δ,
|
||||
apply and.right Hy,
|
||||
apply and.left Hy
|
||||
end
|
||||
|
||||
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
theorem continuous_at_on_dest {f : M → N} {x : M} {s : set M} (Hfx : continuous_at_on f x s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
begin
|
||||
intros ε Hε,
|
||||
rewrite [↑continuous_at at Hfx],
|
||||
cases @Hfx (open_ball (f x) ε) !Open_open_ball (mem_open_ball _ Hε) with V HV,
|
||||
cases HV with HV HVx,
|
||||
cases HVx with HVx HVf,
|
||||
|
@ -650,94 +580,58 @@ theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
|||
existsi δ,
|
||||
split,
|
||||
exact Hδ,
|
||||
intro x' Hx',
|
||||
intro x' Hx's Hx',
|
||||
apply HVf,
|
||||
apply and.intro,
|
||||
apply Hδx,
|
||||
apply Hx',
|
||||
exact Hx',
|
||||
exact Hx's
|
||||
end
|
||||
|
||||
--<<<<<<< HEAD
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x [at x]) :
|
||||
/-=======
|
||||
theorem continuous_at_on_intro {f : M → N} {x : M} {s : set M}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at_on f x s :=
|
||||
begin
|
||||
intro t HOt Hfxt,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty HOt Hfxt with ε Hε,
|
||||
cases H (and.left Hε) with δ Hδ,
|
||||
existsi (open_ball x δ),
|
||||
split,
|
||||
apply open_ball_open,
|
||||
split,
|
||||
apply mem_open_ball,
|
||||
apply and.left Hδ,
|
||||
intro x' Hx',
|
||||
apply mem_preimage,
|
||||
apply mem_of_subset_of_mem,
|
||||
apply and.right Hε,
|
||||
apply and.intro !mem_univ,
|
||||
rewrite dist_comm,
|
||||
apply and.right Hδ,
|
||||
apply and.right Hx',
|
||||
rewrite dist_comm,
|
||||
apply and.right (and.left Hx')
|
||||
end
|
||||
theorem continuous_at_intro {f : M → N} {x : M}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at f x :=
|
||||
continuous_at_of_continuous_at_on_univ
|
||||
(continuous_at_within_intro
|
||||
(take ε, suppose ε > 0,
|
||||
obtain δ (Hδ : δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε), from H this,
|
||||
exists.intro δ (and.intro
|
||||
(show δ > 0, from and.left Hδ)
|
||||
(take x' H' Hx', and.right Hδ _ Hx'))))
|
||||
|
||||
theorem continuous_at_on_elim {f : M → N} {x : M} {s : set M} (Hfs : continuous_at_on f x s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
theorem continuous_at_dest {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
begin
|
||||
intro ε Hε,
|
||||
unfold continuous_at_on at Hfs,
|
||||
cases @Hfs (open_ball (f x) ε) !open_ball_open (mem_open_ball _ Hε) with u Hu,
|
||||
cases Hu with Huo Hu,
|
||||
cases Hu with Hxu Hu,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty Huo Hxu with δ Hδ,
|
||||
cases continuous_at_on_dest (continuous_at_on_univ_of_continuous_at Hfx) Hε with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
exact and.left Hδ,
|
||||
intros x' Hx's Hx'x,
|
||||
have Hims : f ' (u ∩ s) ⊆ open_ball (f x) ε, begin
|
||||
apply subset.trans (image_subset f Hu),
|
||||
apply image_preimage_subset
|
||||
end,
|
||||
have Hx'int : x' ∈ u ∩ s, begin
|
||||
apply and.intro,
|
||||
apply mem_of_subset_of_mem,
|
||||
intro x' Hx',
|
||||
apply and.right Hδ,
|
||||
apply and.intro !mem_univ,
|
||||
rewrite dist_comm,
|
||||
repeat assumption
|
||||
end,
|
||||
have Hxx' : f x' ∈ open_ball (f x) ε, begin
|
||||
apply mem_of_subset_of_mem,
|
||||
apply Hims,
|
||||
apply mem_image_of_mem,
|
||||
apply Hx'int
|
||||
end,
|
||||
rewrite dist_comm,
|
||||
apply and.right Hxx'
|
||||
apply mem_univ,
|
||||
apply Hx'
|
||||
end
|
||||
|
||||
theorem continuous_on_intro {f : M → N} {s : set M}
|
||||
(H : ∀ x, ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_on f s :=
|
||||
begin
|
||||
apply continuous_on_of_forall_continuous_at_on,
|
||||
intro x,
|
||||
apply continuous_at_on_intro,
|
||||
apply H
|
||||
end
|
||||
continuous_on_of_forall_continuous_at_on (λ x, continuous_at_within_intro (H x))
|
||||
|
||||
theorem continuous_on_elim {f : M → N} {s : set M} (Hfs : continuous_on f s) :
|
||||
∀₀ x ∈ s, ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀₀ x' ∈ s, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
begin
|
||||
intros x Hx,
|
||||
exact continuous_at_on_elim (continuous_at_on_of_continuous_on Hfs Hx)
|
||||
end-/
|
||||
theorem continuous_on_dest {f : M → N} {s : set M} (H : continuous_on f s) {x : M} (Hxs : x ∈ s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
continuous_at_on_dest (continuous_at_on_of_continuous_on H Hxs)
|
||||
|
||||
--theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||||
-->>>>>>> feat(theories/analysis): intro/elim rules for continuous_on, etc
|
||||
theorem continuous_intro {f : M → N}
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous f :=
|
||||
continuous_of_forall_continuous_at (λ x, continuous_at_intro (H x))
|
||||
|
||||
theorem continuous_dest {f : M → N} (H : continuous f) (x : M) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
continuous_at_dest (forall_continuous_at_of_continuous H x)
|
||||
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x [at x]) :
|
||||
continuous_at f x :=
|
||||
continuous_at_intro
|
||||
(take ε, suppose ε > 0,
|
||||
|
@ -755,11 +649,9 @@ theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_
|
|||
f ⟶ f x [at x] :=
|
||||
approaches_at_intro
|
||||
(take ε, suppose ε > 0,
|
||||
obtain δ [δpos Hδ], from continuous_at_elim Hf this,
|
||||
obtain δ [δpos Hδ], from continuous_at_dest Hf this,
|
||||
exists.intro δ (and.intro δpos (λ x' Hx' xnex', Hδ x' Hx')))
|
||||
|
||||
--definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
|
||||
|
||||
theorem converges_seq_comp_of_converges_seq_of_cts (X : ℕ → M) [HX : converges_seq X] {f : M → N}
|
||||
(Hf : continuous f) :
|
||||
converges_seq (λ n, f (X n)) :=
|
||||
|
@ -768,7 +660,7 @@ theorem converges_seq_comp_of_converges_seq_of_cts (X : ℕ → M) [HX : converg
|
|||
existsi f xlim,
|
||||
apply approaches_at_infty_intro,
|
||||
intros ε Hε,
|
||||
let Hcont := (continuous_at_elim (forall_continuous_at_of_continuous Hf xlim)) Hε,
|
||||
let Hcont := (continuous_at_dest (forall_continuous_at_of_continuous Hf xlim)) Hε,
|
||||
cases Hcont with δ Hδ,
|
||||
cases approaches_at_infty_dest Hxlim (and.left Hδ) with B HB,
|
||||
existsi B,
|
||||
|
@ -777,22 +669,10 @@ theorem converges_seq_comp_of_converges_seq_of_cts (X : ℕ → M) [HX : converg
|
|||
apply HB Hn
|
||||
end
|
||||
|
||||
omit Hn
|
||||
theorem id_continuous : continuous (λ x : M, x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intros x,
|
||||
apply continuous_at_intro,
|
||||
intro ε Hε,
|
||||
existsi ε,
|
||||
split,
|
||||
assumption,
|
||||
intros,
|
||||
assumption
|
||||
end
|
||||
|
||||
end continuity
|
||||
|
||||
end metric_space
|
||||
|
||||
end analysis
|
||||
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ Author: Jeremy Avigad
|
|||
Normed spaces.
|
||||
-/
|
||||
import algebra.module .metric_space
|
||||
open real nat classical topology analysis
|
||||
open real nat classical topology analysis analysis.metric_space
|
||||
noncomputable theory
|
||||
|
||||
structure has_norm [class] (M : Type) : Type :=
|
||||
|
@ -79,6 +79,8 @@ namespace analysis
|
|||
proposition norm_sub (u v : V) : ∥u - v∥ = ∥v - u∥ :=
|
||||
by rewrite [-norm_neg, neg_sub]
|
||||
|
||||
proposition norm_ne_zero_of_ne_zero {u : V} (H : u ≠ 0) : ∥u∥ ≠ 0 :=
|
||||
suppose ∥u∥ = 0, H (eq_zero_of_norm_eq_zero this)
|
||||
|
||||
end analysis
|
||||
|
||||
|
@ -117,7 +119,7 @@ section
|
|||
|
||||
open nat
|
||||
|
||||
proposition converges_to_seq_norm_elim {X : ℕ → V} {x : V} (H : X ⟶ x [at ∞]) :
|
||||
proposition approaches_seq_norm_elim {X : ℕ → V} {x : V} (H : X ⟶ x [at ∞]) :
|
||||
∀ {ε : ℝ}, ε > 0 → ∃ N₁ : ℕ, ∀ {n : ℕ}, n ≥ N₁ → ∥ X n - x ∥ < ε :=
|
||||
approaches_at_infty_dest H
|
||||
|
||||
|
@ -147,137 +149,274 @@ definition banach_space_to_metric_space [trans_instance] (V : Type) [bsV : banac
|
|||
⦄
|
||||
|
||||
namespace analysis
|
||||
|
||||
-- unfold some common definitions fully (copied from metric space, updated for normed_space notation)
|
||||
-- TODO: copy these for ℝ as well?
|
||||
namespace normed_vector_space
|
||||
section
|
||||
open set topology set.filter
|
||||
variables {M N : Type}
|
||||
--variable [HU : normed_vector_space U]
|
||||
variable [normed_vector_space M]
|
||||
--variables {f g : U → V}
|
||||
|
||||
section approaches
|
||||
variables {X : Type} {F : filter X} {f : X → M} {y : M}
|
||||
|
||||
proposition approaches_intro (H : ∀ ε, ε > 0 → eventually (λ x, ∥(f x) - y∥ < ε) F) :
|
||||
(f ⟶ y) F :=
|
||||
approaches_intro H
|
||||
|
||||
proposition approaches_dest (H : (f ⟶ y) F) {ε : ℝ} (εpos : ε > 0) :
|
||||
eventually (λ x, ∥(f x) - y∥ < ε) F :=
|
||||
approaches_dest H εpos
|
||||
|
||||
variables (F f y)
|
||||
|
||||
proposition approaches_iff : ((f ⟶ y) F) ↔ (∀ ε, ε > 0 → eventually (λ x, ∥(f x) - y∥ < ε) F) :=
|
||||
iff.intro approaches_dest approaches_intro
|
||||
|
||||
end approaches
|
||||
|
||||
proposition approaches_at_infty_intro {f : ℕ → M} {y : M}
|
||||
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → ∥(f n) - y∥ < ε) :
|
||||
f ⟶ y [at ∞] :=
|
||||
approaches_at_infty_intro H
|
||||
|
||||
proposition approaches_at_infty_dest {f : ℕ → M} {y : M}
|
||||
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ N, ∀ ⦃n⦄, n ≥ N → ∥(f n) - y∥ < ε :=
|
||||
approaches_at_infty_dest H εpos
|
||||
|
||||
proposition approaches_at_infty_iff (f : ℕ → M) (y : M) :
|
||||
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → ∥(f n) - y∥ < ε) :=
|
||||
iff.intro approaches_at_infty_dest approaches_at_infty_intro
|
||||
|
||||
variable [normed_vector_space N]
|
||||
|
||||
proposition approaches_at_dest {f : M → N} {y : N} {x : M}
|
||||
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, ∥x' - x∥ < δ → x' ≠ x → ∥(f x') - y∥ < ε :=
|
||||
approaches_at_dest H εpos
|
||||
|
||||
proposition approaches_at_intro {f : M → N} {y : N} {x : M}
|
||||
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, ∥x' - x∥ < δ → x' ≠ x → ∥(f x') - y∥ < ε) :
|
||||
f ⟶ y [at x] :=
|
||||
approaches_at_intro H
|
||||
|
||||
proposition approaches_at_iff (f : M → N) (y : N) (x : M) : f ⟶ y [at x] ↔
|
||||
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, ∥x' - x∥ < δ → x' ≠ x → ∥(f x') - y∥ < ε) :=
|
||||
iff.intro approaches_at_dest approaches_at_intro
|
||||
|
||||
end
|
||||
end normed_vector_space
|
||||
|
||||
|
||||
section
|
||||
variable {V : Type}
|
||||
variable [normed_vector_space V]
|
||||
variable {A : Type}
|
||||
variables {X : A → V}
|
||||
variables {x : V}
|
||||
|
||||
variables {X Y : ℕ → V}
|
||||
variables {x y : V}
|
||||
|
||||
proposition add_converges_to_seq (HX : X ⟶ x [at ∞]) (HY : Y ⟶ y [at ∞]) :
|
||||
(λ n, X n + Y n) ⟶ x + y [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
take ε : ℝ, suppose ε > 0,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||
obtain (N₁ : ℕ) (HN₁ : ∀ {n}, n ≥ N₁ → ∥ X n - x ∥ < ε / 2),
|
||||
from converges_to_seq_norm_elim HX e2pos,
|
||||
obtain (N₂ : ℕ) (HN₂ : ∀ {n}, n ≥ N₂ → ∥ Y n - y ∥ < ε / 2),
|
||||
from converges_to_seq_norm_elim HY e2pos,
|
||||
let N := max N₁ N₂ in
|
||||
exists.intro N
|
||||
(take n,
|
||||
suppose n ≥ N,
|
||||
have ngtN₁ : n ≥ N₁, from nat.le_trans !le_max_left `n ≥ N`,
|
||||
have ngtN₂ : n ≥ N₂, from nat.le_trans !le_max_right `n ≥ N`,
|
||||
show ∥ (X n + Y n) - (x + y) ∥ < ε, from calc
|
||||
∥ (X n + Y n) - (x + y) ∥
|
||||
= ∥ (X n - x) + (Y n - y) ∥ : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg,
|
||||
*add.assoc, add.left_comm (-x)]
|
||||
... ≤ ∥ X n - x ∥ + ∥ Y n - y ∥ : norm_triangle
|
||||
... < ε / 2 + ε / 2 : add_lt_add (HN₁ ngtN₁) (HN₂ ngtN₂)
|
||||
... = ε : add_halves)
|
||||
|
||||
private lemma smul_converges_to_seq_aux {c : ℝ} (cnz : c ≠ 0) (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, c • X n) ⟶ c • x [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
take ε : ℝ, suppose ε > 0,
|
||||
have abscpos : abs c > 0, from abs_pos_of_ne_zero cnz,
|
||||
have epos : ε / abs c > 0, from div_pos_of_pos_of_pos `ε > 0` abscpos,
|
||||
obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε / abs c), from converges_to_seq_norm_elim HX epos,
|
||||
exists.intro N
|
||||
(take n,
|
||||
suppose n ≥ N,
|
||||
have H : norm (X n - x) < ε / abs c, from HN this,
|
||||
show norm (c • X n - c • x) < ε, from calc
|
||||
norm (c • X n - c • x)
|
||||
= abs c * norm (X n - x) : by rewrite [-smul_sub_left_distrib, norm_smul]
|
||||
... < abs c * (ε / abs c) : mul_lt_mul_of_pos_left H abscpos
|
||||
... = ε : mul_div_cancel' (ne_of_gt abscpos))
|
||||
|
||||
proposition smul_converges_to_seq (c : ℝ) (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, c • X n) ⟶ c • x [at ∞] :=
|
||||
by_cases
|
||||
(assume cz : c = 0,
|
||||
have (λ n, c • X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_smul]),
|
||||
begin rewrite [this, cz, zero_smul], apply approaches_constant end)
|
||||
(suppose c ≠ 0, smul_converges_to_seq_aux this HX)
|
||||
|
||||
proposition neg_converges_to_seq (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, - X n) ⟶ - x [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
take ε, suppose ε > 0,
|
||||
obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε), from converges_to_seq_norm_elim HX this,
|
||||
exists.intro N
|
||||
(take n,
|
||||
suppose n ≥ N,
|
||||
show norm (- X n - (- x)) < ε,
|
||||
by rewrite [-neg_neg_sub_neg, *neg_neg, norm_neg]; exact HN `n ≥ N`)
|
||||
|
||||
proposition neg_converges_to_seq_iff : ((λ n, - X n) ⟶ - x [at ∞]) ↔ (X ⟶ x [at ∞]) :=
|
||||
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
|
||||
iff.intro
|
||||
(assume H : (λ n, -X n)⟶ -x [at ∞],
|
||||
show X ⟶ x [at ∞], by rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H)
|
||||
neg_converges_to_seq
|
||||
|
||||
proposition norm_converges_to_seq_zero (HX : X ⟶ 0 [at ∞]) : (λ n, norm (X n)) ⟶ 0 [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
take ε, suppose ε > 0,
|
||||
obtain N (HN : ∀ n, n ≥ N → norm (X n - 0) < ε), from approaches_at_infty_dest HX `ε > 0`,
|
||||
exists.intro N
|
||||
(take n, assume Hn : n ≥ N,
|
||||
have norm (X n) < ε, begin rewrite -(sub_zero (X n)), apply HN n Hn end,
|
||||
show abs (norm (X n) - 0) < ε,
|
||||
by rewrite [sub_zero, abs_of_nonneg !norm_nonneg]; apply this)
|
||||
|
||||
proposition converges_to_seq_zero_of_norm_converges_to_seq_zero
|
||||
(HX : (λ n, norm (X n)) ⟶ 0 [at ∞]) :
|
||||
X ⟶ 0 [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
take ε, suppose ε > 0,
|
||||
obtain N (HN : ∀ n, n ≥ N → abs (norm (X n) - 0) < ε), from approaches_at_infty_dest HX `ε > 0`,
|
||||
exists.intro (N : ℕ)
|
||||
(take n : ℕ, assume Hn : n ≥ N,
|
||||
have HN' : abs (norm (X n) - 0) < ε, from HN n Hn,
|
||||
have norm (X n) < ε,
|
||||
by rewrite [sub_zero at HN', abs_of_nonneg !norm_nonneg at HN']; apply HN',
|
||||
show norm (X n - 0) < ε,
|
||||
by rewrite sub_zero; apply this)
|
||||
|
||||
proposition norm_converges_to_seq_zero_iff (X : ℕ → V) :
|
||||
((λ n, norm (X n)) ⟶ 0 [at ∞]) ↔ (X ⟶ 0 [at ∞]) :=
|
||||
iff.intro converges_to_seq_zero_of_norm_converges_to_seq_zero norm_converges_to_seq_zero
|
||||
|
||||
end analysis
|
||||
|
||||
namespace analysis
|
||||
variables {U V : Type}
|
||||
variable [HU : normed_vector_space U]
|
||||
variable [HV : normed_vector_space V]
|
||||
variables f g : U → V
|
||||
|
||||
include HU HV
|
||||
|
||||
theorem add_converges_to_at {lf lg : V} {x : U} (Hf : f ⟶ lf at x) (Hg : g ⟶ lg at x) :
|
||||
(λ y, f y + g y) ⟶ lf + lg at x :=
|
||||
proposition neg_approaches {F} (HX : (X ⟶ x) F) :
|
||||
((λ n, - X n) ⟶ - x) F :=
|
||||
begin
|
||||
apply converges_to_at_of_all_conv_seqs,
|
||||
intro X HX,
|
||||
apply add_converges_to_seq,
|
||||
apply all_conv_seqs_of_converges_to_at Hf,
|
||||
apply HX,
|
||||
apply all_conv_seqs_of_converges_to_at Hg,
|
||||
apply HX
|
||||
apply normed_vector_space.approaches_intro,
|
||||
intro ε Hε,
|
||||
apply set.filter.eventually_mono (approaches_dest HX Hε),
|
||||
intro x' Hx',
|
||||
rewrite [-norm_neg, neg_neg_sub_neg],
|
||||
apply Hx'
|
||||
end
|
||||
|
||||
open topology
|
||||
proposition approaches_neg {F} (Hx : ((λ n, - X n) ⟶ - x) F) : (X ⟶ x) F :=
|
||||
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
|
||||
by rewrite [aux, -neg_neg x]; exact neg_approaches Hx
|
||||
|
||||
theorem normed_vector_space.continuous_at_intro {x : U}
|
||||
proposition neg_approaches_iff {F} : (((λ n, - X n) ⟶ - x) F) ↔ ((X ⟶ x) F) :=
|
||||
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
|
||||
iff.intro approaches_neg neg_approaches
|
||||
|
||||
proposition norm_approaches_zero_of_approaches_zero {F} (HX : (X ⟶ 0) F) : ((λ n, norm (X n)) ⟶ 0) F :=
|
||||
begin
|
||||
apply metric_space.approaches_intro,
|
||||
intro ε Hε,
|
||||
apply set.filter.eventually_mono (approaches_dest HX Hε),
|
||||
intro x Hx,
|
||||
change abs (∥X x∥ - 0) < ε,
|
||||
rewrite [sub_zero, abs_of_nonneg !norm_nonneg, -sub_zero (X x)],
|
||||
apply Hx
|
||||
end
|
||||
|
||||
proposition approaches_zero_of_norm_approaches_zero
|
||||
{F} (HX : ((λ n, norm (X n)) ⟶ 0) F) :
|
||||
(X ⟶ 0) F :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_intro,
|
||||
intro ε Hε,
|
||||
apply set.filter.eventually_mono (approaches_dest HX Hε),
|
||||
intro x Hx,
|
||||
apply lt_of_abs_lt,
|
||||
rewrite [sub_zero, -sub_zero ∥X x∥],
|
||||
apply Hx
|
||||
end
|
||||
|
||||
proposition norm_approaches_zero_iff (X : ℕ → V) (F) :
|
||||
(((λ n, norm (X n)) ⟶ 0) F) ↔ ((X ⟶ 0) F) :=
|
||||
iff.intro approaches_zero_of_norm_approaches_zero norm_approaches_zero_of_approaches_zero
|
||||
|
||||
end
|
||||
|
||||
|
||||
section
|
||||
variables {U V : Type}
|
||||
--variable [HU : normed_vector_space U]
|
||||
variable [HV : normed_vector_space V]
|
||||
variables {f g : U → V}
|
||||
open set-- filter causes error??
|
||||
include HV
|
||||
|
||||
theorem add_approaches {lf lg : V} {F : filter U} (Hf : (f ⟶ lf) F) (Hg : (g ⟶ lg) F) :
|
||||
((λ y, f y + g y) ⟶ lf + lg) F :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_intro,
|
||||
intro ε Hε,
|
||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos Hε two_pos,
|
||||
have Hfl : filter.eventually (λ x, dist (f x) lf < ε / 2) F, from approaches_dest Hf e2pos,
|
||||
have Hgl : filter.eventually (λ x, dist (g x) lg < ε / 2) F, from approaches_dest Hg e2pos,
|
||||
apply filter.eventually_mono,
|
||||
apply filter.eventually_and Hfl Hgl,
|
||||
intro x Hfg,
|
||||
rewrite [add_sub_comm, -add_halves ε],
|
||||
apply lt_of_le_of_lt,
|
||||
apply norm_triangle,
|
||||
cases Hfg with Hf' Hg',
|
||||
apply add_lt_add,
|
||||
exact Hf', exact Hg'
|
||||
end
|
||||
|
||||
theorem smul_approaches {lf : V} {F : filter U} (Hf : (f ⟶ lf) F) (s : ℝ) :
|
||||
((λ y, s • f y) ⟶ s • lf) F :=
|
||||
begin
|
||||
apply normed_vector_space.approaches_intro,
|
||||
intro ε Hε,
|
||||
cases em (s = 0) with seq sneq,
|
||||
{have H : (λ x, ∥(s • f x) - (s • lf)∥ < ε) = (λ x, true),
|
||||
begin apply funext, intro x, rewrite [seq, 2 zero_smul, sub_zero, norm_zero, eq_true], exact Hε end,
|
||||
rewrite H,
|
||||
apply filter.eventually_true},
|
||||
{have e2pos : ε / abs s > 0, from div_pos_of_pos_of_pos Hε (abs_pos_of_ne_zero sneq),
|
||||
have H : filter.eventually (λ x, ∥(f x) - lf∥ < ε / abs s) F, from approaches_dest Hf e2pos,
|
||||
apply filter.eventually_mono H,
|
||||
intro x Hx,
|
||||
rewrite [-smul_sub_left_distrib, norm_smul, mul.comm],
|
||||
apply mul_lt_of_lt_div,
|
||||
apply abs_pos_of_ne_zero sneq,
|
||||
apply Hx}
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
namespace normed_vector_space
|
||||
variables {U V : Type}
|
||||
variables [HU : normed_vector_space U] [HV : normed_vector_space V]
|
||||
variables {f g : U → V}
|
||||
include HU HV
|
||||
open set
|
||||
|
||||
theorem continuous_at_within_intro {x : U} {s : set U}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε) :
|
||||
continuous_at_on f x s :=
|
||||
metric_space.continuous_at_within_intro H
|
||||
|
||||
theorem continuous_at_on_dest {x : U} {s : set U} (Hfx : continuous_at_on f x s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε :=
|
||||
metric_space.continuous_at_on_dest Hfx
|
||||
|
||||
theorem continuous_on_intro {s : set U}
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε) :
|
||||
continuous_on f s :=
|
||||
metric_space.continuous_on_intro H
|
||||
|
||||
theorem continuous_on_dest {s : set U} (H : continuous_on f s) {x : U} (Hxs : x ∈ s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε :=
|
||||
metric_space.continuous_on_dest H Hxs
|
||||
|
||||
theorem continuous_intro
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε) :
|
||||
continuous f :=
|
||||
metric_space.continuous_intro H
|
||||
|
||||
theorem continuous_dest (H : continuous f) (x : U) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, ∥x' - x∥ < δ → ∥(f x') - (f x)∥ < ε :=
|
||||
metric_space.continuous_dest H x
|
||||
|
||||
theorem continuous_at_intro {x : U}
|
||||
(H : ∀ ε : ℝ, ε > 0 → (∃ δ : ℝ, δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε)) :
|
||||
continuous_at f x :=
|
||||
continuous_at_intro H
|
||||
metric_space.continuous_at_intro H
|
||||
|
||||
theorem normed_vector_space.continuous_at_elim {x : U} (H : continuous_at f x) :
|
||||
theorem continuous_at_dest {x : U} (H : continuous_at f x) :
|
||||
∀ ε : ℝ, ε > 0 → (∃ δ : ℝ, δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε) :=
|
||||
continuous_at_elim H
|
||||
metric_space.continuous_at_dest H
|
||||
|
||||
end normed_vector_space
|
||||
|
||||
section
|
||||
|
||||
open topology
|
||||
variables {U V : Type}
|
||||
variables [HU : normed_vector_space U] [HV : normed_vector_space V]
|
||||
variables {f g : U → V}
|
||||
include HU HV
|
||||
|
||||
theorem neg_continuous (Hf : continuous f) : continuous (λ x : U, - f x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intro x,
|
||||
apply continuous_at_of_tendsto_at,
|
||||
apply neg_approaches,
|
||||
apply tendsto_at_of_continuous_at,
|
||||
apply forall_continuous_at_of_continuous,
|
||||
apply Hf
|
||||
end
|
||||
|
||||
theorem add_continuous (Hf : continuous f) (Hg : continuous g) : continuous (λ x, f x + g x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intro y,
|
||||
apply continuous_at_of_tendsto_at,
|
||||
apply add_approaches,
|
||||
all_goals apply tendsto_at_of_continuous_at,
|
||||
all_goals apply forall_continuous_at_of_continuous,
|
||||
repeat assumption
|
||||
end
|
||||
|
||||
theorem sub_continuous (Hf : continuous f) (Hg : continuous g) : continuous (λ x, f x - g x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intro y,
|
||||
apply continuous_at_of_tendsto_at,
|
||||
apply add_approaches,
|
||||
all_goals apply tendsto_at_of_continuous_at,
|
||||
all_goals apply forall_continuous_at_of_continuous,
|
||||
assumption,
|
||||
apply neg_continuous,
|
||||
assumption
|
||||
end
|
||||
|
||||
theorem smul_continuous (s : ℝ) (Hf : continuous f) : continuous (λ x : U, s • f x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intro y,
|
||||
apply continuous_at_of_tendsto_at,
|
||||
apply smul_approaches,
|
||||
apply tendsto_at_of_continuous_at,
|
||||
apply forall_continuous_at_of_continuous,
|
||||
assumption
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end analysis
|
||||
|
|
|
@ -6,7 +6,7 @@ Author: Robert Y. Lewis
|
|||
Derivatives on ℝ
|
||||
-/
|
||||
import .bounded_linear_operator
|
||||
open real nat classical topology analysis
|
||||
open real nat classical topology analysis set
|
||||
noncomputable theory
|
||||
|
||||
namespace real
|
||||
|
@ -19,42 +19,42 @@ theorem add_sub_self (a b : ℝ) : a + b - a = b :=
|
|||
|
||||
definition derivative_at (f : ℝ → ℝ) (d x : ℝ) := is_frechet_deriv_at f (λ t, d • t) x
|
||||
|
||||
theorem derivative_at_intro (f : ℝ → ℝ) (d x : ℝ) (H : (λ h, (f (x + h) - f x) / h) ⟶ d at 0) :
|
||||
theorem derivative_at_intro (f : ℝ → ℝ) (d x : ℝ) (H : (λ h, (f (x + h) - f x) / h) ⟶ d [at 0]) :
|
||||
derivative_at f d x :=
|
||||
begin
|
||||
apply is_frechet_deriv_at_intro,
|
||||
intros ε Hε,
|
||||
cases H Hε with δ Hδ,
|
||||
cases approaches_at_dest H Hε with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
exact and.left Hδ,
|
||||
intro y Hy,
|
||||
rewrite [-sub_zero y at Hy{2}],
|
||||
note Hδ' := and.right Hδ y Hy,
|
||||
note Hδ' := and.right Hδ y (and.right Hy) (and.left Hy),
|
||||
have Hδ'' : abs ((f (x + y) - f x - d * y) / y) < ε,
|
||||
by rewrite [-div_sub_div_same, mul_div_cancel _ (and.left Hy)]; apply Hδ',
|
||||
show abs (f (x + y) - f x - d * y) / abs y < ε, by rewrite -abs_div; apply Hδ''
|
||||
end
|
||||
|
||||
theorem derivative_at_of_frechet_derivative_at {f g : ℝ → ℝ} [is_bdd_linear_map g] {d x : ℝ}
|
||||
(H : is_frechet_deriv_at f g x) (Hg : g = λ x, d * x) :
|
||||
derivative_at f d x :=
|
||||
by apply is_frechet_deriv_at_of_eq H Hg
|
||||
|
||||
theorem deriv_at_const (c x : ℝ) : derivative_at (λ t, c) 0 x :=
|
||||
begin
|
||||
apply derivative_at_intro,
|
||||
have (λ h, (c - c) / h) = (λ h, 0), from funext (λ h, by rewrite [sub_self, zero_div]),
|
||||
rewrite this,
|
||||
apply converges_to_at_constant
|
||||
end
|
||||
derivative_at_of_frechet_derivative_at
|
||||
(@frechet_deriv_at_const ℝ ℝ _ _ _ c)
|
||||
(funext (λ v, by rewrite zero_mul))
|
||||
|
||||
theorem deriv_at_id (x : ℝ) : derivative_at (λ t, t) 1 x :=
|
||||
begin
|
||||
apply derivative_at_intro,
|
||||
apply converges_to_at_real_intro,
|
||||
intros ε Hε,
|
||||
existsi 1,
|
||||
split,
|
||||
exact zero_lt_one,
|
||||
intros x' Hx',
|
||||
rewrite [add_sub_self, div_self (and.left Hx'), sub_self, abs_zero],
|
||||
exact Hε
|
||||
end
|
||||
derivative_at_of_frechet_derivative_at
|
||||
(@frechet_deriv_at_id ℝ ℝ _ _ _)
|
||||
(funext (λ v, by rewrite one_mul))
|
||||
|
||||
theorem deriv_at_mul {f : ℝ → ℝ} {d x : ℝ} (H : derivative_at f d x) (c : ℝ) :
|
||||
derivative_at (λ t, c * f t) (c * d) x :=
|
||||
derivative_at_of_frechet_derivative_at
|
||||
(frechet_deriv_at_smul _ _ c H)
|
||||
(funext (λ v, by rewrite mul.assoc))
|
||||
|
||||
end real
|
||||
|
|
|
@ -150,17 +150,19 @@ namespace analysis
|
|||
|
||||
theorem dist_eq_abs (x y : real) : dist x y = abs (x - y) := rfl
|
||||
|
||||
proposition converges_to_seq_real_intro {X : ℕ → ℝ} {y : ℝ}
|
||||
namespace real
|
||||
proposition approaches_at_infty_intro {X : ℕ → ℝ} {y : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε) :
|
||||
(X ⟶ y [at ∞]) := approaches_at_infty_intro H
|
||||
(X ⟶ y [at ∞]) := metric_space.approaches_at_infty_intro H
|
||||
|
||||
proposition converges_to_seq_real_elim {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y [at ∞]) :
|
||||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε := approaches_at_infty_dest H
|
||||
proposition approaches_at_infty_dest {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y [at ∞]) :
|
||||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε := metric_space.approaches_at_infty_dest H
|
||||
|
||||
proposition converges_to_seq_real_intro' {X : ℕ → ℝ} {y : ℝ}
|
||||
proposition approaches_at_infty_intro' {X : ℕ → ℝ} {y : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
|
||||
(X ⟶ y [at ∞]) :=
|
||||
approaches_at_infty_intro' H
|
||||
end real
|
||||
|
||||
open pnat subtype
|
||||
local postfix ⁻¹ := pnat.inv
|
||||
|
@ -205,7 +207,7 @@ theorem converges_seq_of_cauchy {X : ℕ → ℝ} (H : cauchy X) : converges_seq
|
|||
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
|
||||
from converges_to_with_rate_of_cauchy H,
|
||||
exists.intro l
|
||||
(approaches_at_infty_intro
|
||||
(real.approaches_at_infty_intro
|
||||
take ε : ℝ,
|
||||
suppose ε > 0,
|
||||
obtain (k' : ℕ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
|
||||
|
@ -249,184 +251,271 @@ definition banach_space_real [trans_instance] : banach_space ℝ :=
|
|||
complete := λ X H, analysis.complete ℝ H
|
||||
⦄
|
||||
|
||||
namespace real
|
||||
open topology set
|
||||
open normed_vector_space
|
||||
|
||||
section
|
||||
variable {f : ℝ → ℝ}
|
||||
|
||||
theorem continuous_dest (H : continuous f) :
|
||||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε :=
|
||||
normed_vector_space.continuous_dest H
|
||||
|
||||
theorem continuous_intro
|
||||
(H : ∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||||
continuous f :=
|
||||
normed_vector_space.continuous_intro H
|
||||
|
||||
theorem continuous_at_dest {x : ℝ} (H : continuous_at f x) :
|
||||
∀ ε : ℝ, ε > 0 → (∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ, abs (x' - x) < δ → abs (f x' - f x) < ε) :=
|
||||
normed_vector_space.continuous_at_dest H
|
||||
|
||||
theorem continuous_at_intro {x : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||||
continuous_at f x :=
|
||||
normed_vector_space.continuous_at_intro H
|
||||
|
||||
theorem continuous_at_within_intro {x : ℝ} {s : set ℝ}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
|
||||
continuous_at_on f x s :=
|
||||
normed_vector_space.continuous_at_within_intro H
|
||||
|
||||
|
||||
theorem continuous_at_on_dest {x : ℝ} {s : set ℝ} (Hfx : continuous_at_on f x s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
|
||||
normed_vector_space.continuous_at_on_dest Hfx
|
||||
|
||||
theorem continuous_on_intro {s : set ℝ}
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
|
||||
continuous_on f s :=
|
||||
normed_vector_space.continuous_on_intro H
|
||||
|
||||
theorem continuous_on_dest {s : set ℝ} (H : continuous_on f s) {x : ℝ} (Hxs : x ∈ s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
|
||||
normed_vector_space.continuous_on_dest H Hxs
|
||||
|
||||
end
|
||||
|
||||
section approaches
|
||||
open set.filter set topology
|
||||
variables {X : Type} {F : filter X} {f : X → ℝ} {y : ℝ}
|
||||
|
||||
proposition approaches_intro (H : ∀ ε, ε > 0 → eventually (λ x, abs ((f x) - y) < ε) F) :
|
||||
(f ⟶ y) F :=
|
||||
normed_vector_space.approaches_intro H
|
||||
|
||||
proposition approaches_dest (H : (f ⟶ y) F) {ε : ℝ} (εpos : ε > 0) :
|
||||
eventually (λ x, abs ((f x) - y) < ε) F :=
|
||||
normed_vector_space.approaches_dest H εpos
|
||||
|
||||
variables (F f y)
|
||||
|
||||
proposition approaches_iff : ((f ⟶ y) F) ↔ (∀ ε, ε > 0 → eventually (λ x, abs ((f x) - y) < ε) F) :=
|
||||
iff.intro approaches_dest approaches_intro
|
||||
|
||||
end approaches
|
||||
|
||||
proposition approaches_at_infty_intro {f : ℕ → ℝ} {y : ℝ}
|
||||
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → abs ((f n) - y) < ε) :
|
||||
f ⟶ y [at ∞] :=
|
||||
normed_vector_space.approaches_at_infty_intro H
|
||||
|
||||
proposition approaches_at_infty_dest {f : ℕ → ℝ} {y : ℝ}
|
||||
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε :=
|
||||
normed_vector_space.approaches_at_infty_dest H εpos
|
||||
|
||||
proposition approaches_at_infty_iff (f : ℕ → ℝ) (y : ℝ) :
|
||||
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε) :=
|
||||
iff.intro approaches_at_infty_dest approaches_at_infty_intro
|
||||
|
||||
section
|
||||
variable {f : ℝ → ℝ}
|
||||
proposition approaches_at_dest {y x : ℝ}
|
||||
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε :=
|
||||
metric_space.approaches_at_dest H εpos
|
||||
|
||||
proposition approaches_at_intro {y x : ℝ}
|
||||
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :
|
||||
f ⟶ y [at x] :=
|
||||
metric_space.approaches_at_intro H
|
||||
|
||||
proposition approaches_at_iff (y x : ℝ) : f ⟶ y [at x] ↔
|
||||
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :=
|
||||
iff.intro approaches_at_dest approaches_at_intro
|
||||
|
||||
end
|
||||
|
||||
end real
|
||||
|
||||
/- limits under pointwise operations -/
|
||||
|
||||
section limit_operations
|
||||
variables {X Y : ℕ → ℝ}
|
||||
open set
|
||||
variable {A : Type}
|
||||
variables {X Y : A → ℝ}
|
||||
variables {x y : ℝ}
|
||||
variable {F : filter A}
|
||||
|
||||
proposition mul_left_converges_to_seq (c : ℝ) (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, c * X n) ⟶ c * x [at ∞] :=
|
||||
smul_converges_to_seq c HX
|
||||
proposition mul_left_approaches (c : ℝ) (HX : (X ⟶ x) F) :
|
||||
((λ n, c * X n) ⟶ c * x) F :=
|
||||
smul_approaches HX c
|
||||
|
||||
proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, X n * c) ⟶ x * c [at ∞] :=
|
||||
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
|
||||
by rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||||
proposition mul_right_approaches (c : ℝ) (HX : (X ⟶ x) F) :
|
||||
((λ n, X n * c) ⟶ x * c) F :=
|
||||
have (λ n, X n * c) = (λ n, c * X n), from funext (λ n, !mul.comm),
|
||||
by rewrite [this, mul.comm]; apply mul_left_approaches _ HX
|
||||
|
||||
theorem converges_to_seq_squeeze (HX : X ⟶ x [at ∞]) (HY : Y ⟶ x [at ∞]) {Z : ℕ → ℝ} (HZX : ∀ n, X n ≤ Z n)
|
||||
(HZY : ∀ n, Z n ≤ Y n) : Z ⟶ x [at ∞] :=
|
||||
theorem approaches_squeeze (HX : (X ⟶ x) F) (HY : (Y ⟶ x) F)
|
||||
{Z : A → ℝ} (HZX : filter.eventually (λ n, X n ≤ Z n) F) (HZY : filter.eventually (λ n, Z n ≤ Y n) F) :
|
||||
(Z ⟶ x) F :=
|
||||
begin
|
||||
apply approaches_at_infty_intro,
|
||||
intros ε Hε,
|
||||
have Hε4 : ε / 4 > 0, from div_pos_of_pos_of_pos Hε four_pos,
|
||||
cases approaches_at_infty_dest HX Hε4 with N1 HN1,
|
||||
cases approaches_at_infty_dest HY Hε4 with N2 HN2,
|
||||
existsi max N1 N2,
|
||||
intro n Hn,
|
||||
have HXY : abs (Y n - X n) < ε / 2, begin
|
||||
apply lt_of_le_of_lt,
|
||||
apply abs_sub_le _ x,
|
||||
have Hε24 : ε / 2 = ε / 4 + ε / 4, from eq.symm !add_quarters,
|
||||
rewrite Hε24,
|
||||
apply add_lt_add,
|
||||
apply HN2,
|
||||
apply ge.trans Hn !le_max_right,
|
||||
rewrite abs_sub,
|
||||
apply HN1,
|
||||
apply ge.trans Hn !le_max_left
|
||||
end,
|
||||
have HZX : abs (Z n - X n) < ε / 2, begin
|
||||
have HZXnp : Z n - X n ≥ 0, from sub_nonneg_of_le !HZX,
|
||||
have HXYnp : Y n - X n ≥ 0, from sub_nonneg_of_le (le.trans !HZX !HZY),
|
||||
rewrite [abs_of_nonneg HZXnp, abs_of_nonneg HXYnp at HXY],
|
||||
note Hgt := lt_add_of_sub_lt_right HXY,
|
||||
have Hlt : Z n < ε / 2 + X n, from calc
|
||||
Z n ≤ Y n : HZY
|
||||
... < ε / 2 + X n : Hgt,
|
||||
apply sub_lt_right_of_lt_add Hlt
|
||||
end,
|
||||
have H : abs (Z n - x) < ε, begin
|
||||
apply lt_of_le_of_lt,
|
||||
apply abs_sub_le _ (X n),
|
||||
apply lt.trans,
|
||||
apply add_lt_add,
|
||||
apply HZX,
|
||||
apply HN1,
|
||||
apply ge.trans Hn !le_max_left,
|
||||
apply div_two_add_div_four_lt Hε
|
||||
end,
|
||||
exact H
|
||||
apply real.approaches_intro,
|
||||
intro ε Hε,
|
||||
apply filter.eventually_mp,
|
||||
rotate 1,
|
||||
apply filter.eventually_and,
|
||||
apply real.approaches_dest HX Hε,
|
||||
apply real.approaches_dest HY Hε,
|
||||
apply filter.eventually_mono,
|
||||
apply filter.eventually_and HZX HZY,
|
||||
intros x' Hlo Hdst,
|
||||
change abs (Z x' - x) < ε,
|
||||
cases em (x ≤ Z x') with HxleZ HxnleZ, -- annoying linear arith
|
||||
{have Y x' - x = (Z x' - x) + (Y x' - Z x'), by rewrite -sub_eq_sub_add_sub,
|
||||
have H : abs (Y x' - x) < ε, from and.right Hdst,
|
||||
rewrite this at H,
|
||||
have H'' : Y x' - Z x' ≥ 0, from sub_nonneg_of_le (and.right Hlo),
|
||||
have H' : Z x' - x ≥ 0, from sub_nonneg_of_le HxleZ,
|
||||
krewrite [abs_of_nonneg H', abs_of_nonneg (add_nonneg H' H'') at H],
|
||||
apply lt_of_add_lt_of_nonneg_left H H''},
|
||||
{have X x' - x = (Z x' - x) + (X x' - Z x'), by rewrite -sub_eq_sub_add_sub,
|
||||
have H : abs (X x' - x) < ε, from and.left Hdst,
|
||||
rewrite this at H,
|
||||
have H' : x - Z x' > 0, from sub_pos_of_lt (lt_of_not_ge HxnleZ),
|
||||
have H'2 : Z x' - x < 0,
|
||||
by rewrite [-neg_neg (Z x' - x)]; apply neg_neg_of_pos; rewrite [neg_sub]; apply H',
|
||||
have H'' : X x' - Z x' ≤ 0, from sub_nonpos_of_le (and.left Hlo),
|
||||
krewrite [abs_of_neg H'2, abs_of_neg (add_neg_of_neg_of_nonpos H'2 H'') at H, neg_add at H],
|
||||
apply lt_of_add_lt_of_nonneg_left H,
|
||||
apply neg_nonneg_of_nonpos H''}
|
||||
end
|
||||
|
||||
proposition converges_to_seq_of_abs_sub_converges_to_seq (Habs : (λ n, abs (X n - x)) ⟶ 0 [at ∞]) :
|
||||
X ⟶ x [at ∞] :=
|
||||
proposition approaches_of_abs_sub_approaches {F} (Habs : ((λ n, abs (X n - x)) ⟶ 0) F) :
|
||||
(X ⟶ x) F :=
|
||||
begin
|
||||
apply approaches_at_infty_intro,
|
||||
intros ε Hε,
|
||||
cases approaches_at_infty_dest Habs Hε with N HN,
|
||||
existsi N,
|
||||
apply real.approaches_intro,
|
||||
intro ε Hε,
|
||||
apply set.filter.eventually_mono,
|
||||
apply real.approaches_dest Habs Hε,
|
||||
intro n Hn,
|
||||
have Hn' : abs (abs (X n - x) - 0) < ε, from HN Hn,
|
||||
have Hn' : abs (abs (X n - x) - 0) < ε, from Hn,
|
||||
rewrite [sub_zero at Hn', abs_abs at Hn'],
|
||||
exact Hn'
|
||||
end
|
||||
|
||||
proposition abs_sub_converges_to_seq_of_converges_to_seq (HX : X ⟶ x [at ∞]) :
|
||||
(λ n, abs (X n - x)) ⟶ 0 [at ∞] :=
|
||||
proposition abs_sub_approaches_of_approaches {F} (HX : (X ⟶ x) F) :
|
||||
((λ n, abs (X n - x)) ⟶ 0) F :=
|
||||
begin
|
||||
apply approaches_at_infty_intro,
|
||||
apply real.approaches_intro,
|
||||
intros ε Hε,
|
||||
cases approaches_at_infty_dest HX Hε with N HN,
|
||||
existsi N,
|
||||
apply set.filter.eventually_mono,
|
||||
apply real.approaches_dest HX Hε,
|
||||
intro n Hn,
|
||||
have Hn' : abs (abs (X n - x) - 0) < ε, by rewrite [sub_zero, abs_abs]; apply HN Hn,
|
||||
have Hn' : abs (abs (X n - x) - 0) < ε, by rewrite [sub_zero, abs_abs]; apply Hn,
|
||||
exact Hn'
|
||||
end
|
||||
|
||||
proposition mul_converges_to_seq (HX : X ⟶ x [at ∞]) (HY : Y ⟶ y [at ∞]) :
|
||||
(λ n, X n * Y n) ⟶ x * y [at ∞] :=
|
||||
have Hbd : ∃ K : ℝ, ∀ n : ℕ, abs (X n) ≤ K, begin
|
||||
cases bounded_of_converges_seq HX with K HK,
|
||||
proposition bounded_of_approaches_real {F} (HX : (X ⟶ x) F) :
|
||||
∃ K : ℝ, filter.eventually (λ n, abs (X n) ≤ K) F :=
|
||||
begin
|
||||
cases bounded_of_converges HX with K HK,
|
||||
existsi K + abs x,
|
||||
intro n,
|
||||
note Habs := le.trans (abs_abs_sub_abs_le_abs_sub (X n) x) !HK,
|
||||
apply le_add_of_sub_right_le,
|
||||
apply filter.eventually_mono HK,
|
||||
intro x' Hx',
|
||||
note Hle := abs_sub_abs_le_abs_sub (X x') x,
|
||||
apply le.trans,
|
||||
apply le_abs_self,
|
||||
assumption
|
||||
end,
|
||||
obtain K HK, from Hbd,
|
||||
have Habsle : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
|
||||
intro,
|
||||
have Heq : X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y), by
|
||||
rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
|
||||
apply le_add_of_sub_right_le,
|
||||
apply Hle,
|
||||
apply add_le_add_right,
|
||||
apply Hx'
|
||||
end
|
||||
|
||||
proposition mul_approaches {F} (HX : (X ⟶ x) F) (HY : (Y ⟶ y) F) :
|
||||
((λ n, X n * Y n) ⟶ x * y) F :=
|
||||
obtain K HK, from bounded_of_approaches_real HX,
|
||||
have Habsle : filter.eventually
|
||||
(λ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x)) F, begin
|
||||
have Heq : ∀ n, X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y),
|
||||
by intro n; rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
|
||||
apply filter.eventually_mono HK,
|
||||
intro x' Hx',
|
||||
apply le.trans,
|
||||
rewrite Heq,
|
||||
apply abs_add_le_abs_add_abs,
|
||||
apply add_le_add,
|
||||
rewrite [-mul_sub_left_distrib, abs_mul],
|
||||
apply mul_le_mul_of_nonneg_right,
|
||||
apply HK,
|
||||
apply Hx',
|
||||
apply abs_nonneg,
|
||||
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
|
||||
apply le.refl
|
||||
end,
|
||||
have Hdifflim : (λ n, abs (X n * Y n - x * y)) ⟶ 0 [at ∞], begin
|
||||
apply converges_to_seq_squeeze,
|
||||
have Hdifflim : ((λ n, abs (X n * Y n - x * y)) ⟶ 0) F, begin
|
||||
apply approaches_squeeze,
|
||||
rotate 2,
|
||||
intro, apply abs_nonneg,
|
||||
intro,
|
||||
apply filter.eventually_mono HK,
|
||||
intro x' Hx',
|
||||
apply abs_nonneg,
|
||||
apply Habsle,
|
||||
apply approaches_constant,
|
||||
rewrite -{0}zero_add,
|
||||
apply add_converges_to_seq,
|
||||
apply add_approaches,
|
||||
krewrite -(mul_zero K),
|
||||
apply mul_left_converges_to_seq,
|
||||
apply abs_sub_converges_to_seq_of_converges_to_seq,
|
||||
apply mul_left_approaches,
|
||||
apply abs_sub_approaches_of_approaches,
|
||||
exact HY,
|
||||
krewrite -(mul_zero (abs y)),
|
||||
apply mul_left_converges_to_seq,
|
||||
apply abs_sub_converges_to_seq_of_converges_to_seq,
|
||||
apply mul_left_approaches,
|
||||
apply abs_sub_approaches_of_approaches,
|
||||
exact HX
|
||||
end,
|
||||
converges_to_seq_of_abs_sub_converges_to_seq Hdifflim
|
||||
approaches_of_abs_sub_approaches Hdifflim
|
||||
|
||||
|
||||
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
|
||||
|
||||
proposition abs_converges_to_seq_zero (HX : X ⟶ 0 [at ∞]) : (λ n, abs (X n)) ⟶ 0 [at ∞] :=
|
||||
norm_converges_to_seq_zero HX
|
||||
|
||||
proposition converges_to_seq_zero_of_abs_converges_to_seq_zero (HX : (λ n, abs (X n)) ⟶ 0 [at ∞]) :
|
||||
X ⟶ 0 [at ∞] :=
|
||||
converges_to_seq_zero_of_norm_converges_to_seq_zero HX
|
||||
|
||||
proposition abs_converges_to_seq_zero_iff (X : ℕ → ℝ) :
|
||||
((λ n, abs (X n)) ⟶ 0 [at ∞]) ↔ (X ⟶ 0 [at ∞]) :=
|
||||
iff.intro converges_to_seq_zero_of_abs_converges_to_seq_zero abs_converges_to_seq_zero
|
||||
|
||||
-- TODO: products of two sequences, converges_seq, limit_seq
|
||||
|
||||
end limit_operations
|
||||
|
||||
/- properties of converges_to_at -/
|
||||
|
||||
section limit_operations_continuous
|
||||
variables {f g h : ℝ → ℝ}
|
||||
variables {a b x y : ℝ}
|
||||
|
||||
--<<<<<<< HEAD
|
||||
theorem mul_converges_to_at (Hf : f ⟶ a [at x]) (Hg : g ⟶ b [at x]) : (λ z, f z * g z) ⟶ a * b [at x] :=
|
||||
/-=======
|
||||
theorem converges_to_at_real_intro (Hf : ∀ ⦃ε⦄, ε > 0 →
|
||||
(∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ abs (x' - x) < δ → abs (f x' - y) < ε)) :
|
||||
converges_to_at f y x := Hf
|
||||
|
||||
theorem mul_converges_to_at (Hf : f ⟶ a at x) (Hg : g ⟶ b at x) : (λ z, f z * g z) ⟶ a * b at x :=
|
||||
>>>>>>> feat(library/analysis): basic properties about real derivatives-/
|
||||
proposition mul_approaches_zero_of_approaches_zero_of_approaches (HX : (X ⟶ 0) F) (HY : (Y ⟶ y) F) :
|
||||
((λ z, X z * Y z) ⟶ 0) F :=
|
||||
begin
|
||||
apply converges_to_at_of_all_conv_seqs,
|
||||
intro X HX,
|
||||
apply mul_converges_to_seq,
|
||||
apply comp_approaches_at_infty Hf,
|
||||
apply and.right (HX 0),
|
||||
apply (set.filter.eventually_of_forall _ (λ n, and.left (HX n))),
|
||||
apply comp_approaches_at_infty Hg,
|
||||
apply and.right (HX 0),
|
||||
apply (set.filter.eventually_of_forall _ (λ n, and.left (HX n)))
|
||||
krewrite [-zero_mul y],
|
||||
apply mul_approaches,
|
||||
exact HX, exact HY
|
||||
end
|
||||
|
||||
end limit_operations_continuous
|
||||
proposition mul_approaches_zero_of_approaches_of_approaches_zero (HX : (X ⟶ y) F) (HY : (Y ⟶ 0) F) :
|
||||
((λ z, X z * Y z) ⟶ 0) F :=
|
||||
begin
|
||||
have H : (λ z, X z * Y z) = (λ z, Y z * X z), from funext (λ a, !mul.comm),
|
||||
rewrite H,
|
||||
exact mul_approaches_zero_of_approaches_zero_of_approaches HY HX
|
||||
end
|
||||
|
||||
proposition abs_approaches_zero_of_approaches_zero (HX : (X ⟶ 0) F) : ((λ n, abs (X n)) ⟶ 0) F :=
|
||||
norm_approaches_zero_of_approaches_zero HX
|
||||
|
||||
proposition approaches_zero_of_abs_approaches_zero (HX : ((λ n, abs (X n)) ⟶ 0) F) :
|
||||
(X ⟶ 0) F :=
|
||||
approaches_zero_of_norm_approaches_zero HX
|
||||
|
||||
proposition abs_approaches_zero_iff :
|
||||
((λ n, abs (X n)) ⟶ 0) F ↔ (X ⟶ 0) F :=
|
||||
iff.intro approaches_zero_of_abs_approaches_zero abs_approaches_zero_of_approaches_zero
|
||||
end limit_operations
|
||||
|
||||
|
||||
/- monotone sequences -/
|
||||
|
||||
|
@ -436,7 +525,7 @@ variable {X : ℕ → ℝ}
|
|||
|
||||
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : ℝ}
|
||||
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X ' univ) [at ∞] :=
|
||||
approaches_at_infty_intro
|
||||
real.approaches_at_infty_intro
|
||||
(let sX := sup (X ' univ) in
|
||||
have Xle : ∀ i, X i ≤ sX, from
|
||||
take i,
|
||||
|
@ -475,7 +564,7 @@ have H₃ : {x : ℝ | -x ∈ X ' univ} = {x : ℝ | x ∈ (λ n, -X n) ' univ},
|
|||
... = {x : ℝ | x ∈ (λ n, -X n) ' univ} : image_comp,
|
||||
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
||||
begin
|
||||
apply iff.mp !neg_converges_to_seq_iff,
|
||||
apply approaches_neg,
|
||||
-- need krewrite here
|
||||
krewrite [-sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
||||
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
|
||||
|
@ -488,11 +577,11 @@ end monotone_sequences
|
|||
section xn
|
||||
open nat set
|
||||
|
||||
theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) :
|
||||
theorem pow_approaches_zero_at_infty {x : ℝ} (H : abs x < 1) :
|
||||
(λ n, x^n) ⟶ 0 [at ∞] :=
|
||||
suffices H' : (λ n, (abs x)^n) ⟶ 0 [at ∞], from
|
||||
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
|
||||
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
|
||||
by rewrite this at H'; exact approaches_zero_of_abs_approaches_zero H',
|
||||
let aX := (λ n, (abs x)^n),
|
||||
iaX := real.inf (aX ' univ),
|
||||
asX := (λ n, (abs x)^(succ n)) in
|
||||
|
@ -506,7 +595,7 @@ have noninc_aX : nonincreasing aX, from
|
|||
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
|
||||
have aXconv : aX ⟶ iaX [at ∞], proof converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX qed,
|
||||
have asXconv : asX ⟶ iaX [at ∞], from tendsto_succ_at_infty aXconv,
|
||||
have asXconv' : asX ⟶ (abs x) * iaX [at ∞], from mul_left_converges_to_seq (abs x) aXconv,
|
||||
have asXconv' : asX ⟶ (abs x) * iaX [at ∞], from mul_left_approaches (abs x) aXconv,
|
||||
have iaX = (abs x) * iaX, from sorry, -- converges_to_seq_unique asXconv asXconv',
|
||||
have iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
|
||||
show aX ⟶ 0 [at ∞], begin rewrite -this, exact aXconv end --from this ▸ aXconv
|
||||
|
@ -515,36 +604,115 @@ end xn
|
|||
|
||||
/- continuity on the reals -/
|
||||
|
||||
section continuous
|
||||
open topology
|
||||
/-namespace real
|
||||
open topology set
|
||||
open normed_vector_space
|
||||
|
||||
section
|
||||
variable {f : ℝ → ℝ}
|
||||
|
||||
theorem continuous_real_elim (H : continuous f) :
|
||||
theorem continuous_dest (H : continuous f) :
|
||||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε :=
|
||||
take x, continuous_at_elim (forall_continuous_at_of_continuous H x)
|
||||
normed_vector_space.continuous_dest H
|
||||
|
||||
theorem continuous_real_intro
|
||||
theorem continuous_intro
|
||||
(H : ∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||||
continuous f :=
|
||||
continuous_of_forall_continuous_at (take x, continuous_at_intro (H x))
|
||||
normed_vector_space.continuous_intro H
|
||||
|
||||
section
|
||||
open set
|
||||
variable {s : set ℝ}
|
||||
--theorem continuous_on_real_elim (H : continuous_on f s) :
|
||||
-- ∀₀ x ∈ s, x = x := sorry
|
||||
theorem continuous_at_dest {x : ℝ} (H : continuous_at f x) :
|
||||
∀ ε : ℝ, ε > 0 → (∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ, abs (x' - x) < δ → abs (f x' - f x) < ε) :=
|
||||
normed_vector_space.continuous_at_dest H
|
||||
|
||||
theorem continuous_at_intro {x : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||||
continuous_at f x :=
|
||||
normed_vector_space.continuous_at_intro H
|
||||
|
||||
theorem continuous_at_within_intro {x : ℝ} {s : set ℝ}
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
|
||||
continuous_at_on f x s :=
|
||||
normed_vector_space.continuous_at_within_intro H
|
||||
|
||||
|
||||
theorem continuous_at_on_dest {x : ℝ} {s : set ℝ} (Hfx : continuous_at_on f x s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
|
||||
normed_vector_space.continuous_at_on_dest Hfx
|
||||
|
||||
theorem continuous_on_intro {s : set ℝ}
|
||||
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
|
||||
continuous_on f s :=
|
||||
normed_vector_space.continuous_on_intro H
|
||||
|
||||
theorem continuous_on_dest {s : set ℝ} (H : continuous_on f s) {x : ℝ} (Hxs : x ∈ s) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
|
||||
normed_vector_space.continuous_on_dest H Hxs
|
||||
|
||||
end
|
||||
|
||||
section
|
||||
variable {f : ℕ → ℝ}
|
||||
proposition approaches_at_infty_intro {y : ℝ}
|
||||
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → abs ((f n) - y) < ε) :
|
||||
f ⟶ y [at ∞] :=
|
||||
normed_vector_space.approaches_at_infty_intro H
|
||||
|
||||
proposition approaches_at_infty_dest {y : ℝ}
|
||||
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε :=
|
||||
approaches_at_infty_dest H εpos
|
||||
|
||||
proposition approaches_at_infty_iff (y : ℝ) :
|
||||
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → abs((f n) - y) < ε) :=
|
||||
iff.intro approaches_at_infty_dest approaches_at_infty_intro
|
||||
|
||||
end
|
||||
|
||||
section
|
||||
variable {f : ℝ → ℝ}
|
||||
proposition approaches_at_dest {y x : ℝ}
|
||||
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||||
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε :=
|
||||
approaches_at_dest H εpos
|
||||
|
||||
proposition approaches_at_intro {y x : ℝ}
|
||||
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :
|
||||
f ⟶ y [at x] :=
|
||||
approaches_at_intro H
|
||||
|
||||
proposition approaches_at_iff (y x : ℝ) : f ⟶ y [at x] ↔
|
||||
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :=
|
||||
iff.intro approaches_at_dest approaches_at_intro
|
||||
|
||||
/-proposition approaches_seq_real_intro {X : ℕ → ℝ} {y : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε) :
|
||||
(X ⟶ y [at ∞]) := metric_space.approaches_at_infty_intro H
|
||||
|
||||
proposition approaches_seq_real_elim {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y [at ∞]) :
|
||||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε := metric_space.approaches_at_infty_dest H
|
||||
|
||||
proposition approaches_seq_real_intro' {X : ℕ → ℝ} {y : ℝ}
|
||||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
|
||||
(X ⟶ y [at ∞]) :=
|
||||
approaches_at_infty_intro' H-/
|
||||
|
||||
end
|
||||
|
||||
end real-/
|
||||
|
||||
section continuous
|
||||
open topology
|
||||
variable {f : ℝ → ℝ}
|
||||
variable (Hf : continuous f)
|
||||
include Hf
|
||||
|
||||
theorem pos_on_nbhd_of_cts_of_pos {b : ℝ} (Hb : f b > 0) :
|
||||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
|
||||
begin
|
||||
let Hcont := continuous_real_elim Hf b Hb,
|
||||
let Hcont := real.continuous_dest Hf b Hb,
|
||||
cases Hcont with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
|
@ -559,7 +727,7 @@ theorem pos_on_nbhd_of_cts_of_pos {b : ℝ} (Hb : f b > 0) :
|
|||
theorem neg_on_nbhd_of_cts_of_neg {b : ℝ} (Hb : f b < 0) :
|
||||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (y - b) < δ → f y < 0 :=
|
||||
begin
|
||||
let Hcont := continuous_real_elim Hf b (neg_pos_of_neg Hb),
|
||||
let Hcont := real.continuous_dest Hf b (neg_pos_of_neg Hb),
|
||||
cases Hcont with δ Hδ,
|
||||
existsi δ,
|
||||
split,
|
||||
|
@ -572,66 +740,17 @@ theorem neg_on_nbhd_of_cts_of_neg {b : ℝ} (Hb : f b < 0) :
|
|||
assumption
|
||||
end
|
||||
|
||||
theorem continuous_neg_of_continuous : continuous (λ x, - f x) :=
|
||||
begin
|
||||
apply continuous_real_intro,
|
||||
intros x ε Hε,
|
||||
cases continuous_real_elim Hf x Hε with δ Hδ,
|
||||
cases Hδ with Hδ₁ Hδ₂,
|
||||
existsi δ,
|
||||
split,
|
||||
assumption,
|
||||
intros x' Hx',
|
||||
let HD := Hδ₂ x' Hx',
|
||||
rewrite [-abs_neg, neg_neg_sub_neg],
|
||||
exact HD
|
||||
end
|
||||
|
||||
theorem continuous_offset_of_continuous (a : ℝ) :
|
||||
continuous (λ x, (f x) + a) :=
|
||||
begin
|
||||
apply continuous_real_intro,
|
||||
intros x ε Hε,
|
||||
cases continuous_real_elim Hf x Hε with δ Hδ,
|
||||
cases Hδ with Hδ₁ Hδ₂,
|
||||
existsi δ,
|
||||
split,
|
||||
assumption,
|
||||
intros x' Hx',
|
||||
rewrite [add_sub_comm, sub_self, add_zero],
|
||||
apply Hδ₂,
|
||||
assumption
|
||||
end
|
||||
|
||||
theorem continuous_mul_of_continuous {g : ℝ → ℝ} (Hcong : continuous g) :
|
||||
continuous (λ x, f x * g x) :=
|
||||
begin
|
||||
apply continuous_of_forall_continuous_at,
|
||||
intro x,
|
||||
apply continuous_at_of_converges_to_at,
|
||||
apply mul_converges_to_at,
|
||||
all_goals apply converges_to_at_of_continuous_at,
|
||||
apply continuous_at_of_tendsto_at,
|
||||
apply mul_approaches,
|
||||
all_goals apply tendsto_at_of_continuous_at,
|
||||
all_goals apply forall_continuous_at_of_continuous,
|
||||
apply Hf,
|
||||
apply Hcong
|
||||
end
|
||||
|
||||
end continuous
|
||||
|
||||
-- this can be strengthened: Hle and Hge only need to hold around x
|
||||
theorem converges_to_at_squeeze {M : Type} [Hm : metric_space M] {f g h : M → ℝ} {a : ℝ} {x : M}
|
||||
(Hf : f ⟶ a at x) (Hh : h ⟶ a at x) (Hle : ∀ y : M, f y ≤ g y)
|
||||
(Hge : ∀ y : M, g y ≤ h y) : g ⟶ a at x :=
|
||||
begin
|
||||
apply converges_to_at_of_all_conv_seqs,
|
||||
intro X HX,
|
||||
apply converges_to_seq_squeeze,
|
||||
apply all_conv_seqs_of_converges_to_at Hf,
|
||||
apply HX,
|
||||
apply all_conv_seqs_of_converges_to_at Hh,
|
||||
apply HX,
|
||||
intro,
|
||||
apply Hle,
|
||||
intro,
|
||||
apply Hge
|
||||
end
|
||||
|
|
|
@ -34,7 +34,7 @@ private theorem lb_le_ub (x : ℝ) (H : x ≥ 0) : sqr_lb x ≤ sqr_ub x :=
|
|||
apply zero_le_one
|
||||
end
|
||||
|
||||
private lemma sqr_cts : continuous (λ x : ℝ, x * x) := continuous_mul_of_continuous id_continuous id_continuous
|
||||
private lemma sqr_cts : continuous (λ x : ℝ, x * x) := continuous_mul_of_continuous continuous_id continuous_id
|
||||
|
||||
definition sqrt (x : ℝ) : ℝ :=
|
||||
if H : x ≥ 0 then
|
||||
|
|
|
@ -6,6 +6,7 @@ Temporary file; move in Lean3.
|
|||
-/
|
||||
import data.set algebra.order_bigops
|
||||
import data.finset data.list.sort
|
||||
import data.real
|
||||
|
||||
-- move this to init.function
|
||||
|
||||
|
@ -20,6 +21,24 @@ theorem eq_of_inv_mul_eq_one {A : Type} {a b : A} [group A] (H : b⁻¹ * a = 1)
|
|||
have a⁻¹ * 1 = a⁻¹, by inst_simp,
|
||||
by inst_simp
|
||||
|
||||
theorem lt_neg_self_of_neg {A : Type} {a : A} [ordered_comm_group A] (Ha : a < 0) : a < -a :=
|
||||
calc
|
||||
a < 0 : Ha
|
||||
... = -0 : by rewrite neg_zero
|
||||
... < -a : neg_lt_neg Ha
|
||||
|
||||
theorem lt_of_add_lt_of_nonneg_left {A : Type} {a b c : A} [ordered_comm_group A]
|
||||
(H : a + b < c) (Hb : b ≥ 0) : a < c :=
|
||||
calc
|
||||
a < c - b : lt_sub_right_of_add_lt H
|
||||
... ≤ c : sub_le_self _ Hb
|
||||
|
||||
theorem lt_of_add_lt_of_nonneg_right {A : Type} {a b c : A} [ordered_comm_group A]
|
||||
(H : a + b < c) (Hb : a ≥ 0) : b < c :=
|
||||
calc
|
||||
b < c - a : lt_sub_left_of_add_lt H
|
||||
... ≤ c : sub_le_self _ Hb
|
||||
|
||||
-- move to init.quotient
|
||||
|
||||
namespace quot
|
||||
|
@ -502,3 +521,18 @@ have succ (Max₀ s) ≤ Max₀ s, from le_Max₀ this,
|
|||
show false, from not_succ_le_self this
|
||||
|
||||
end nat
|
||||
|
||||
|
||||
-- move to real
|
||||
|
||||
namespace real
|
||||
theorem lt_of_abs_lt {a b : ℝ} (Ha : abs a < b) : a < b :=
|
||||
if Hnn : a ≥ 0 then
|
||||
by rewrite [-abs_of_nonneg Hnn]; exact Ha
|
||||
else
|
||||
have Hlt : a < 0, from lt_of_not_ge Hnn,
|
||||
have -a < b, by rewrite [-abs_of_neg Hlt]; exact Ha,
|
||||
calc
|
||||
a < -a : lt_neg_self_of_neg Hlt
|
||||
... < b : this
|
||||
end real
|
||||
|
|
|
@ -5,7 +5,7 @@ Authors: Jacob Gross, Jeremy Avigad
|
|||
|
||||
Continuous functions.
|
||||
-/
|
||||
import theories.topology.basic algebra.category ..move
|
||||
import theories.topology.basic algebra.category ..move .limit
|
||||
open algebra eq.ops set topology function category sigma.ops
|
||||
|
||||
namespace topology
|
||||
|
@ -291,6 +291,41 @@ theorem forall_continuous_at_of_continuous {f : X → Y} (H : continuous f) :
|
|||
apply mem_univ
|
||||
end
|
||||
|
||||
section limit
|
||||
open set
|
||||
theorem tendsto_at_of_continuous_at {f : X → Y} {x : X} (H : continuous_at f x) :
|
||||
(f ⟶ f x) (nhds x) :=
|
||||
begin
|
||||
apply approaches_intro,
|
||||
intro s HOs Hfxs,
|
||||
cases H HOs Hfxs with u Hu,
|
||||
apply eventually_nhds_intro,
|
||||
exact and.left Hu,
|
||||
exact and.left (and.right Hu),
|
||||
intro x' Hx',
|
||||
apply @mem_of_mem_preimage _ _ f,
|
||||
apply and.right (and.right Hu),
|
||||
exact Hx'
|
||||
end
|
||||
|
||||
theorem continuous_at_of_tendsto_at {f : X → Y} {x : X} (H : (f ⟶ f x) (nhds x)) :
|
||||
continuous_at f x :=
|
||||
begin
|
||||
intro s HOs Hfxs,
|
||||
cases eventually_nhds_dest (approaches_elim H HOs Hfxs) with u Hu,
|
||||
existsi u,
|
||||
split,
|
||||
exact and.left Hu,
|
||||
split,
|
||||
exact and.left (and.right Hu),
|
||||
intro x Hx,
|
||||
apply mem_preimage,
|
||||
apply and.right (and.right Hu),
|
||||
apply Hx
|
||||
end
|
||||
|
||||
end limit
|
||||
|
||||
/- The Category TOP -/
|
||||
|
||||
section TOP
|
||||
|
|
|
@ -703,6 +703,16 @@ section approaches
|
|||
have eventually (λ x, f x ∈ univ ∧ f x ≠ y) F₁,
|
||||
from eventually_congr (take x, by rewrite [mem_univ_iff, true_and]) Hf₂,
|
||||
tendsto_comp_of_approaches_of_tendsto_at_within Hf₁ this Hg
|
||||
|
||||
proposition approaches_constant : ((λ x, y) ⟶ y) F :=
|
||||
begin
|
||||
apply approaches_intro,
|
||||
intro s Hs Hys,
|
||||
have H : (λ x : X, y ∈ s) = (λ x : X, true), from funext (λ x, by rewrite classical.eq_true; exact Hys),
|
||||
rewrite H,
|
||||
apply eventually_true
|
||||
end
|
||||
|
||||
end approaches
|
||||
|
||||
/-
|
||||
|
|
Loading…
Reference in a new issue