feat(data/set): add missing set theorems
This commit is contained in:
parent
4a41e78124
commit
68bc41b5fe
1 changed files with 12 additions and 0 deletions
|
@ -820,6 +820,18 @@ theorem sInter_eq_comp_sUnion_comp (S : set (set X)) :
|
||||||
⋂₀ S = -(⋃₀ (complement ' S)) :=
|
⋂₀ S = -(⋃₀ (complement ' S)) :=
|
||||||
by rewrite [-comp_comp, comp_sInter]
|
by rewrite [-comp_comp, comp_sInter]
|
||||||
|
|
||||||
|
theorem inter_sUnion_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : s ∩ t ≠ ∅) :
|
||||||
|
s ∩ ⋃₀ S ≠ ∅ :=
|
||||||
|
obtain x Hsx Htx, from exists_mem_of_ne_empty Hne,
|
||||||
|
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
|
||||||
|
ne_empty_of_mem (mem_inter Hsx this)
|
||||||
|
|
||||||
|
theorem sUnion_inter_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : t ∩ s ≠ ∅) :
|
||||||
|
(⋃₀ S) ∩ s ≠ ∅ :=
|
||||||
|
obtain x Htx Hsx, from exists_mem_of_ne_empty Hne,
|
||||||
|
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
|
||||||
|
ne_empty_of_mem (mem_inter this Hsx)
|
||||||
|
|
||||||
-- Union and Inter: a family of sets indexed by a type
|
-- Union and Inter: a family of sets indexed by a type
|
||||||
|
|
||||||
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : (⋃ i, b i) ⊆ c :=
|
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : (⋃ i, b i) ⊆ c :=
|
||||||
|
|
Loading…
Reference in a new issue