chore(library/hott) change is_pointed to structure
This commit is contained in:
parent
0417c21bbb
commit
7c81044a99
1 changed files with 8 additions and 11 deletions
|
@ -6,34 +6,31 @@ import hott.path hott.trunc data.sigma data.prod
|
||||||
|
|
||||||
open path prod truncation
|
open path prod truncation
|
||||||
|
|
||||||
inductive is_pointed [class] (A : Type) :=
|
structure is_pointed [class] (A : Type) :=
|
||||||
pointed_mk : Π(a : A), is_pointed A
|
(point : A)
|
||||||
|
|
||||||
namespace is_pointed
|
namespace is_pointed
|
||||||
variables {A B : Type.{1}} (f : A → B)
|
variables {A B : Type} (f : A → B)
|
||||||
|
|
||||||
definition point (A : Type) [H : is_pointed A] : A :=
|
|
||||||
is_pointed.rec (λinv, inv) H
|
|
||||||
|
|
||||||
-- Any contractible type is pointed
|
-- Any contractible type is pointed
|
||||||
protected definition contr [instance] [H : is_contr A] : is_pointed A :=
|
protected definition contr [instance] [H : is_contr A] : is_pointed A :=
|
||||||
pointed_mk (center A)
|
is_pointed.mk (center A)
|
||||||
|
|
||||||
-- A pi type with a pointed target is pointed
|
-- A pi type with a pointed target is pointed
|
||||||
protected definition pi [instance] {P : A → Type} [H : Πx, is_pointed (P x)]
|
protected definition pi [instance] {P : A → Type} [H : Πx, is_pointed (P x)]
|
||||||
: is_pointed (Πx, P x) :=
|
: is_pointed (Πx, P x) :=
|
||||||
pointed_mk (λx, point (P x))
|
is_pointed.mk (λx, point (P x))
|
||||||
|
|
||||||
-- A sigma type of pointed components is pointed
|
-- A sigma type of pointed components is pointed
|
||||||
protected definition sigma [instance] {P : A → Type} [G : is_pointed A]
|
protected definition sigma [instance] {P : A → Type} [G : is_pointed A]
|
||||||
[H : is_pointed (P (point A))] : is_pointed (Σx, P x) :=
|
[H : is_pointed (P (point A))] : is_pointed (Σx, P x) :=
|
||||||
pointed_mk (sigma.dpair (point A) (point (P (point A))))
|
is_pointed.mk (sigma.dpair (point A) (point (P (point A))))
|
||||||
|
|
||||||
protected definition prod [H1 : is_pointed A] [H2 : is_pointed B]
|
protected definition prod [H1 : is_pointed A] [H2 : is_pointed B]
|
||||||
: is_pointed (A × B) :=
|
: is_pointed (A × B) :=
|
||||||
pointed_mk (prod.mk (point A) (point B))
|
is_pointed.mk (prod.mk (point A) (point B))
|
||||||
|
|
||||||
protected definition loop_space (a : A) : is_pointed (a ≈ a) :=
|
protected definition loop_space (a : A) : is_pointed (a ≈ a) :=
|
||||||
pointed_mk idp
|
is_pointed.mk idp
|
||||||
|
|
||||||
end is_pointed
|
end is_pointed
|
||||||
|
|
Loading…
Reference in a new issue