feat(hott): port parts of natural numbers and integers from standard library to HoTT
This also involves: - adding definitions about logic and natural numbers existing in the standard library to init - porting the current algebraic hierarchy
This commit is contained in:
parent
e9ff925e2f
commit
7cfac38eda
25 changed files with 4485 additions and 374 deletions
|
@ -1,9 +1,15 @@
|
|||
algebra
|
||||
=======
|
||||
|
||||
Note: most of these files are ported from the standard library. If anything needs to be changed, it is probably a good idea to change it in the standard library and then port the file again (see also [script/port.pl](../../script/port.pl)).
|
||||
|
||||
* [binary](binary.hlean) : properties of binary operations
|
||||
* [relation](relation.hlean) : properties of relations
|
||||
* [group](group.hlean)
|
||||
* [ring](ring.hlean)
|
||||
* [ordered_group](ordered_group.hlean)
|
||||
* [ordered_ring](ordered_ring.hlean)
|
||||
* [field](field.hlean)
|
||||
|
||||
Subfolders:
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ Ported from Coq HoTT
|
|||
|
||||
import .iso ..group
|
||||
|
||||
open eq is_trunc iso category path_algebra nat unit
|
||||
open eq is_trunc iso category algebra nat unit
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -72,15 +72,15 @@ namespace category
|
|||
begin
|
||||
fapply groupoid.mk, fapply precategory.mk,
|
||||
intros, exact A,
|
||||
intros, apply (@group.carrier_hset A G),
|
||||
intros, apply (@group.is_hset_carrier A G),
|
||||
intros [a, b, c, g, h], exact (@group.mul A G g h),
|
||||
intro a, exact (@group.one A G),
|
||||
intros, exact (@group.mul_assoc A G h g f)⁻¹,
|
||||
intros, exact (@group.one_mul A G f),
|
||||
intros, exact (@group.mul_one A G f),
|
||||
intros, esimp [precategory.mk], apply is_iso.mk,
|
||||
apply mul_left_inv,
|
||||
apply mul_right_inv,
|
||||
apply mul.left_inv,
|
||||
apply mul.right_inv,
|
||||
end
|
||||
|
||||
protected definition hom_group {A : Type} [G : groupoid A] (a : A) :
|
||||
|
|
466
hott/algebra/field.hlean
Normal file
466
hott/algebra/field.hlean
Normal file
|
@ -0,0 +1,466 @@
|
|||
/-
|
||||
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.field
|
||||
Authors: Robert Lewis
|
||||
|
||||
Structures with multiplicative and additive components, including division rings and fields.
|
||||
The development is modeled after Isabelle's library.
|
||||
|
||||
Ported from the standard library
|
||||
-/
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import algebra.ring
|
||||
open core
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
-- in division rings, 1 / 0 = 0
|
||||
structure division_ring [class] (A : Type) extends ring A, has_inv A, zero_ne_one_class A :=
|
||||
(mul_inv_cancel : Π{a}, a ≠ zero → mul a (inv a) = one)
|
||||
(inv_mul_cancel : Π{a}, a ≠ zero → mul (inv a) a = one)
|
||||
--(inv_zero : inv zero = zero)
|
||||
|
||||
section division_ring
|
||||
variables [s : division_ring A] {a b c : A}
|
||||
include s
|
||||
|
||||
definition divide (a b : A) : A := a * b⁻¹
|
||||
infix `/` := divide
|
||||
|
||||
-- only in this file
|
||||
local attribute divide [reducible]
|
||||
|
||||
definition mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
|
||||
division_ring.mul_inv_cancel H
|
||||
|
||||
definition inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||||
division_ring.inv_mul_cancel H
|
||||
|
||||
definition inv_eq_one_div : a⁻¹ = 1 / a := !one_mul⁻¹
|
||||
|
||||
-- the following are only theorems if we assume inv_zero here
|
||||
/- definition inv_zero : 0⁻¹ = 0 := !division_ring.inv_zero
|
||||
|
||||
definition one_div_zero : 1 / 0 = 0 :=
|
||||
calc
|
||||
1 / 0 = 1 * 0⁻¹ : refl
|
||||
... = 1 * 0 : division_ring.inv_zero A
|
||||
... = 0 : mul_zero
|
||||
-/
|
||||
|
||||
definition div_eq_mul_one_div : a / b = a * (1 / b) :=
|
||||
by rewrite [↑divide, one_mul]
|
||||
|
||||
-- definition div_zero : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
|
||||
|
||||
definition mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
|
||||
by rewrite [-inv_eq_one_div, (mul_inv_cancel H)]
|
||||
|
||||
definition one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
|
||||
by rewrite [-inv_eq_one_div, (inv_mul_cancel H)]
|
||||
|
||||
definition div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
|
||||
|
||||
definition one_div_one : 1 / 1 = 1 := div_self (ne.symm zero_ne_one)
|
||||
|
||||
definition mul_div_assoc : (a * b) / c = a * (b / c) := !mul.assoc
|
||||
|
||||
definition one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=
|
||||
assume H2 : 1 / a = 0,
|
||||
have C1 : 0 = 1, from inverse (by rewrite [-(mul_one_div_cancel H), H2, mul_zero]),
|
||||
absurd C1 zero_ne_one
|
||||
|
||||
-- definition ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
|
||||
-- assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
|
||||
|
||||
-- the analogue in group is called inv_one
|
||||
definition inv_one_is_one : 1⁻¹ = 1 :=
|
||||
by rewrite [-mul_one, (inv_mul_cancel (ne.symm zero_ne_one))]
|
||||
|
||||
definition div_one : a / 1 = a :=
|
||||
by rewrite [↑divide, inv_one_is_one, mul_one]
|
||||
|
||||
definition zero_div : 0 / a = 0 := !zero_mul
|
||||
|
||||
-- note: integral domain has a "mul_ne_zero". Discrete fields are int domains.
|
||||
definition mul_ne_zero' (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
|
||||
assume H : a * b = 0,
|
||||
have C1 : a = 0, by rewrite [-mul_one, -(mul_one_div_cancel Hb), -mul.assoc, H, zero_mul],
|
||||
absurd C1 Ha
|
||||
|
||||
definition mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 :=
|
||||
have H2 : a ≠ 0 × b ≠ 0, from mul_ne_zero_imp_ne_zero H,
|
||||
mul_ne_zero' (prod.pr2 H2) (prod.pr1 H2)
|
||||
|
||||
|
||||
-- make "left" and "right" versions?
|
||||
definition eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a :=
|
||||
have H2 : a ≠ 0, from
|
||||
(assume A : a = 0,
|
||||
have B : 0 = 1, by rewrite [-(zero_mul b), -A, H],
|
||||
absurd B zero_ne_one),
|
||||
show b = 1 / a, from inverse (calc
|
||||
1 / a = (1 / a) * 1 : mul_one
|
||||
... = (1 / a) * (a * b) : H
|
||||
... = (1 / a) * a * b : mul.assoc
|
||||
... = 1 * b : one_div_mul_cancel H2
|
||||
... = b : one_mul)
|
||||
|
||||
-- which one is left and which is right?
|
||||
definition eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a :=
|
||||
have H2 : a ≠ 0, from
|
||||
(assume A : a = 0,
|
||||
have B : 0 = 1, from inverse (calc
|
||||
1 = b * a : inverse H
|
||||
... = b * 0 : A
|
||||
... = 0 : mul_zero),
|
||||
absurd B zero_ne_one),
|
||||
show b = 1 / a, from inverse (calc
|
||||
1 / a = 1 * (1 / a) : one_mul
|
||||
... = b * a * (1 / a) : H
|
||||
... = b * (a * (1 / a)) : mul.assoc
|
||||
... = b * 1 : mul_one_div_cancel H2
|
||||
... = b : mul_one)
|
||||
|
||||
definition one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (b * a) :=
|
||||
have H : (b * a) * ((1 / a) * (1 / b)) = 1, by
|
||||
rewrite [mul.assoc, -(mul.assoc a), (mul_one_div_cancel Ha), one_mul, (mul_one_div_cancel Hb)],
|
||||
eq_one_div_of_mul_eq_one H
|
||||
|
||||
definition one_div_neg_one_eq_neg_one : 1 / (-1) = -1 :=
|
||||
have H : (-1) * (-1) = 1, by rewrite [-neg_eq_neg_one_mul, neg_neg],
|
||||
inverse (eq_one_div_of_mul_eq_one H)
|
||||
|
||||
definition one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) :=
|
||||
have H1 : -1 ≠ 0, from
|
||||
(assume H2 : -1 = 0, absurd (inverse (calc
|
||||
1 = -(-1) : neg_neg
|
||||
... = -0 : H2
|
||||
... = 0 : neg_zero)) zero_ne_one),
|
||||
calc
|
||||
1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul
|
||||
... = (1 / a) * (1 / (- 1)) : one_div_mul_one_div H H1
|
||||
... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one
|
||||
... = - (1 / a) : mul_neg_one_eq_neg
|
||||
|
||||
definition div_neg_eq_neg_div (Ha : a ≠ 0) : b / (- a) = - (b / a) :=
|
||||
calc
|
||||
b / (- a) = b * (1 / (- a)) : inv_eq_one_div
|
||||
... = b * -(1 / a) : one_div_neg_eq_neg_one_div Ha
|
||||
... = -(b * (1 / a)) : neg_mul_eq_mul_neg
|
||||
... = - (b * a⁻¹) : inv_eq_one_div
|
||||
|
||||
definition neg_div (Ha : a ≠ 0) : (-b) / a = - (b / a) :=
|
||||
by rewrite [neg_eq_neg_one_mul, mul_div_assoc, -neg_eq_neg_one_mul]
|
||||
|
||||
definition neg_div_neg_eq_div (Hb : b ≠ 0) : (-a) / (-b) = a / b :=
|
||||
by rewrite [(div_neg_eq_neg_div Hb), (neg_div Hb), neg_neg]
|
||||
|
||||
definition div_div (H : a ≠ 0) : 1 / (1 / a) = a :=
|
||||
inverse (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H))
|
||||
|
||||
definition eq_of_invs_eq (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) : a = b :=
|
||||
by rewrite [-(div_div Ha), H, (div_div Hb)]
|
||||
|
||||
-- oops, the analogous definition in group is called inv_mul, but it *should* be called
|
||||
-- mul_inv, in which case, we will have to rename this one
|
||||
definition mul_inv (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||||
have H1 : b * a ≠ 0, from mul_ne_zero' Hb Ha,
|
||||
inverse (calc
|
||||
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div
|
||||
... = (1 / a) * (1 / b) : inv_eq_one_div
|
||||
... = (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||||
... = (b * a)⁻¹ : inv_eq_one_div)
|
||||
|
||||
definition mul_div_cancel (Hb : b ≠ 0) : a * b / b = a :=
|
||||
by rewrite [↑divide, mul.assoc, (mul_inv_cancel Hb), mul_one]
|
||||
|
||||
definition div_mul_cancel (Hb : b ≠ 0) : a / b * b = a :=
|
||||
by rewrite [↑divide, mul.assoc, (inv_mul_cancel Hb), mul_one]
|
||||
|
||||
definition div_add_div_same : a / c + b / c = (a + b) / c := !right_distrib⁻¹
|
||||
|
||||
definition inv_mul_add_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||||
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
|
||||
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
|
||||
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
|
||||
|
||||
definition inv_mul_sub_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||||
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
||||
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
|
||||
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one, one_mul]
|
||||
|
||||
definition div_eq_one_iff_eq (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
|
||||
iff.intro
|
||||
(assume H1 : a / b = 1, inverse (calc
|
||||
b = 1 * b : one_mul
|
||||
... = a / b * b : H1
|
||||
... = a : div_mul_cancel Hb))
|
||||
(assume H2 : a = b, calc
|
||||
a / b = b / b : H2
|
||||
... = 1 : div_self Hb)
|
||||
|
||||
definition eq_div_iff_mul_eq (Hc : c ≠ 0) : a = b / c ↔ a * c = b :=
|
||||
iff.intro
|
||||
(assume H : a = b / c, by rewrite [H, (div_mul_cancel Hc)])
|
||||
(assume H : a * c = b, by rewrite [-(mul_div_cancel Hc), H])
|
||||
|
||||
definition add_div_eq_mul_add_div (Hc : c ≠ 0) : a + b / c = (a * c + b) / c :=
|
||||
have H : (a + b / c) * c = a * c + b, by rewrite [right_distrib, (div_mul_cancel Hc)],
|
||||
(iff.elim_right (eq_div_iff_mul_eq Hc)) H
|
||||
|
||||
definition mul_mul_div (Hc : c ≠ 0) : a = a * c * (1 / c) :=
|
||||
calc
|
||||
a = a * 1 : mul_one
|
||||
... = a * (c * (1 / c)) : mul_one_div_cancel Hc
|
||||
... = a * c * (1 / c) : mul.assoc
|
||||
|
||||
-- There are many similar rules to these last two in the Isabelle library
|
||||
-- that haven't been ported yet. Do as necessary.
|
||||
|
||||
end division_ring
|
||||
|
||||
structure field [class] (A : Type) extends division_ring A, comm_ring A
|
||||
|
||||
section field
|
||||
variables [s : field A] {a b c d: A}
|
||||
include s
|
||||
local attribute divide [reducible]
|
||||
|
||||
definition one_div_mul_one_div' (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (a * b) :=
|
||||
by rewrite [(one_div_mul_one_div Ha Hb), mul.comm b]
|
||||
|
||||
definition div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
|
||||
let Ha : a ≠ 0 := prod.pr1 (mul_ne_zero_imp_ne_zero H) in
|
||||
inverse (calc
|
||||
1 / b = 1 * (1 / b) : one_mul
|
||||
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel Ha
|
||||
... = a * (a⁻¹ * (1 / b)) : mul.assoc
|
||||
... = a * ((1 / a) * (1 / b)) :inv_eq_one_div
|
||||
... = a * (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||||
... = a * (1 / (a * b)) : mul.comm
|
||||
... = a * (a * b)⁻¹ : inv_eq_one_div)
|
||||
|
||||
definition div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
|
||||
let H1 : b * a ≠ 0 := mul_ne_zero_comm H in
|
||||
by rewrite [mul.comm a, (div_mul_right Ha H1)]
|
||||
|
||||
definition mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
|
||||
by rewrite [mul.comm a, (mul_div_cancel Ha)]
|
||||
|
||||
definition mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a :=
|
||||
by rewrite [mul.comm, (div_mul_cancel Hb)]
|
||||
|
||||
definition one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
|
||||
have H [visible] : a * b ≠ 0, from (mul_ne_zero' Ha Hb),
|
||||
by rewrite [add.comm, -(div_mul_left Ha H), -(div_mul_right Hb H), ↑divide, -right_distrib]
|
||||
|
||||
definition div_mul_div (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) :=
|
||||
by rewrite [↑divide, 2 mul.assoc, (mul.comm b⁻¹), mul.assoc, (mul_inv Hd Hb)]
|
||||
|
||||
definition mul_div_mul_left (Hb : b ≠ 0) (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
|
||||
have H [visible] : c * b ≠ 0, from mul_ne_zero' Hc Hb,
|
||||
by rewrite [-(div_mul_div Hc Hb), (div_self Hc), one_mul]
|
||||
|
||||
definition mul_div_mul_right (Hb : b ≠ 0) (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
|
||||
by rewrite [(mul.comm a), (mul.comm b), (mul_div_mul_left Hb Hc)]
|
||||
|
||||
definition div_mul_eq_mul_div : (b / c) * a = (b * a) / c :=
|
||||
by rewrite [↑divide, mul.assoc, (mul.comm c⁻¹), -mul.assoc]
|
||||
|
||||
-- this one is odd -- I am not sure what to call it, but again, the prefix is right
|
||||
definition div_mul_eq_mul_div_comm (Hc : c ≠ 0) : (b / c) * a = b * (a / c) :=
|
||||
by rewrite [(div_mul_eq_mul_div), -(one_mul c), -(div_mul_div (ne.symm zero_ne_one) Hc), div_one, one_mul]
|
||||
|
||||
definition div_add_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||||
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
|
||||
have H [visible] : b * d ≠ 0, from mul_ne_zero' Hb Hd,
|
||||
by rewrite [-(mul_div_mul_right Hb Hd), -(mul_div_mul_left Hd Hb), div_add_div_same]
|
||||
|
||||
definition div_sub_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||||
(a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) :=
|
||||
by rewrite [↑sub, neg_eq_neg_one_mul, -mul_div_assoc, (div_add_div Hb Hd),
|
||||
-mul.assoc, (mul.comm b), mul.assoc, -neg_eq_neg_one_mul]
|
||||
|
||||
definition mul_eq_mul_of_div_eq_div (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b :=
|
||||
by rewrite [-mul_one, mul.assoc, (mul.comm d), -mul.assoc, -(div_self Hb),
|
||||
-(div_mul_eq_mul_div_comm Hb), H, (div_mul_eq_mul_div), (div_mul_cancel Hd)]
|
||||
|
||||
definition one_div_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / (a / b) = b / a :=
|
||||
have H : (a / b) * (b / a) = 1, from calc
|
||||
(a / b) * (b / a) = (a * b) / (b * a) : div_mul_div Hb Ha
|
||||
... = (a * b) / (a * b) : mul.comm
|
||||
... = 1 : div_self (mul_ne_zero' Ha Hb),
|
||||
inverse (eq_one_div_of_mul_eq_one H)
|
||||
|
||||
definition div_div_eq_mul_div (Hb : b ≠ 0) (Hc : c ≠ 0) : a / (b / c) = (a * c) / b :=
|
||||
by rewrite [div_eq_mul_one_div, (one_div_div Hb Hc), -mul_div_assoc]
|
||||
|
||||
definition div_div_eq_div_mul (Hb : b ≠ 0) (Hc : c ≠ 0) : (a / b) / c = a / (b * c) :=
|
||||
by rewrite [div_eq_mul_one_div, (div_mul_div Hb Hc), mul_one]
|
||||
|
||||
definition div_div_div_div (Hb : b ≠ 0) (Hc : c ≠ 0) (Hd : d ≠ 0) : (a / b) / (c / d) = (a * d) / (b * c) :=
|
||||
by rewrite [(div_div_eq_mul_div Hc Hd), (div_mul_eq_mul_div), (div_div_eq_div_mul Hb Hc)]
|
||||
|
||||
-- remaining to transfer from Isabelle fields: ordered fields
|
||||
|
||||
end field
|
||||
|
||||
structure discrete_field [class] (A : Type) extends field A :=
|
||||
(has_decidable_eq : decidable_eq A)
|
||||
(inv_zero : inv zero = zero)
|
||||
|
||||
attribute discrete_field.has_decidable_eq [instance]
|
||||
|
||||
section discrete_field
|
||||
variable [s : discrete_field A]
|
||||
include s
|
||||
variables {a b c d : A}
|
||||
|
||||
-- many of the theorems in discrete_field are the same as theorems in field or division ring,
|
||||
-- but with fewer hypotheses since 0⁻¹ = 0 and equality is decidable.
|
||||
-- they are named with '. Is there a better convention?
|
||||
|
||||
definition discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
|
||||
(x y : A) (H : x * y = 0) : x = 0 ⊎ y = 0 :=
|
||||
decidable.by_cases
|
||||
(assume H : x = 0, sum.inl H)
|
||||
(assume H1 : x ≠ 0,
|
||||
sum.inr (by rewrite [-one_mul, -(inv_mul_cancel H1), mul.assoc, H, mul_zero]))
|
||||
|
||||
definition discrete_field.to_integral_domain [instance] [reducible] [coercion] :
|
||||
integral_domain A :=
|
||||
⦃ integral_domain, s,
|
||||
eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄
|
||||
|
||||
definition inv_zero : 0⁻¹ = (0 : A) := !discrete_field.inv_zero
|
||||
|
||||
definition one_div_zero : 1 / 0 = 0 :=
|
||||
calc
|
||||
1 / 0 = 1 * 0⁻¹ : refl
|
||||
... = 1 * 0 : discrete_field.inv_zero A
|
||||
... = 0 : mul_zero
|
||||
|
||||
definition div_zero : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
|
||||
|
||||
definition ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
|
||||
assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
|
||||
|
||||
definition inv_zero_imp_zero (H : 1 / a = 0) : a = 0 :=
|
||||
decidable.by_cases
|
||||
(assume Ha, Ha)
|
||||
(assume Ha, empty.elim ((one_div_ne_zero Ha) H))
|
||||
|
||||
-- the following could all go in "discrete_division_ring"
|
||||
definition one_div_mul_one_div'' : (1 / a) * (1 / b) = 1 / (b * a) :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0,
|
||||
by rewrite [Ha, div_zero, zero_mul, -(@div_zero A s 1), mul_zero b])
|
||||
(assume Ha : a ≠ 0,
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0,
|
||||
by rewrite [Hb, div_zero, mul_zero, -(@div_zero A s 1), zero_mul a])
|
||||
(assume Hb : b ≠ 0, one_div_mul_one_div Ha Hb))
|
||||
|
||||
definition one_div_neg_eq_neg_one_div' : 1 / (- a) = - (1 / a) :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, by rewrite [Ha, neg_zero, 2 div_zero, neg_zero])
|
||||
(assume Ha : a ≠ 0, one_div_neg_eq_neg_one_div Ha)
|
||||
|
||||
definition neg_div' : (-b) / a = - (b / a) :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero, neg_zero])
|
||||
(assume Ha : a ≠ 0, neg_div Ha)
|
||||
|
||||
definition neg_div_neg_eq_div' : (-a) / (-b) = a / b :=
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, neg_zero, 2 div_zero])
|
||||
(assume Hb : b ≠ 0, neg_div_neg_eq_div Hb)
|
||||
|
||||
definition div_div' : 1 / (1 / a) = a :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero])
|
||||
(assume Ha : a ≠ 0, div_div Ha)
|
||||
|
||||
definition eq_of_invs_eq' (H : 1 / a = 1 / b) : a = b :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0,
|
||||
have Hb : b = 0, from inv_zero_imp_zero (by rewrite [-H, Ha, div_zero]),
|
||||
Hb⁻¹ ▸ Ha)
|
||||
(assume Ha : a ≠ 0,
|
||||
have Hb : b ≠ 0, from ne_zero_of_one_div_ne_zero (H ▸ (one_div_ne_zero Ha)),
|
||||
eq_of_invs_eq Ha Hb H)
|
||||
|
||||
definition mul_inv' : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, by rewrite [Ha, mul_zero, 2 inv_zero, zero_mul])
|
||||
(assume Ha : a ≠ 0,
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, zero_mul, 2 inv_zero, mul_zero])
|
||||
(assume Hb : b ≠ 0, mul_inv Ha Hb))
|
||||
|
||||
-- the following are specifically for fields
|
||||
definition one_div_mul_one_div''' : (1 / a) * (1 / b) = 1 / (a * b) :=
|
||||
by rewrite [(one_div_mul_one_div''), mul.comm b]
|
||||
|
||||
definition div_mul_right' (Ha : a ≠ 0) : a / (a * b) = 1 / b :=
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
|
||||
(assume Hb : b ≠ 0, div_mul_right Hb (mul_ne_zero Ha Hb))
|
||||
|
||||
definition div_mul_left' (Hb : b ≠ 0) : b / (a * b) = 1 / a :=
|
||||
by rewrite [mul.comm a, div_mul_right' Hb]
|
||||
|
||||
definition div_mul_div' : (a / b) * (c / d) = (a * c) / (b * d) :=
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, div_zero, zero_mul, -(@div_zero A s (a * c)), zero_mul])
|
||||
(assume Hb : b ≠ 0,
|
||||
decidable.by_cases
|
||||
(assume Hd : d = 0, by rewrite [Hd, div_zero, mul_zero, -(@div_zero A s (a * c)), mul_zero])
|
||||
(assume Hd : d ≠ 0, div_mul_div Hb Hd))
|
||||
|
||||
definition mul_div_mul_left' (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
|
||||
(assume Hb : b ≠ 0, mul_div_mul_left Hb Hc)
|
||||
|
||||
definition mul_div_mul_right' (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
|
||||
by rewrite [(mul.comm a), (mul.comm b), (mul_div_mul_left' Hc)]
|
||||
|
||||
-- this one is odd -- I am not sure what to call it, but again, the prefix is right
|
||||
definition div_mul_eq_mul_div_comm' : (b / c) * a = b * (a / c) :=
|
||||
decidable.by_cases
|
||||
(assume Hc : c = 0, by rewrite [Hc, div_zero, zero_mul, -(mul_zero b), -(@div_zero A s a)])
|
||||
(assume Hc : c ≠ 0, div_mul_eq_mul_div_comm Hc)
|
||||
|
||||
definition one_div_div' : 1 / (a / b) = b / a :=
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, by rewrite [Ha, zero_div, 2 div_zero])
|
||||
(assume Ha : a ≠ 0,
|
||||
decidable.by_cases
|
||||
(assume Hb : b = 0, by rewrite [Hb, 2 div_zero, zero_div])
|
||||
(assume Hb : b ≠ 0, one_div_div Ha Hb))
|
||||
|
||||
definition div_div_eq_mul_div' : a / (b / c) = (a * c) / b :=
|
||||
by rewrite [div_eq_mul_one_div, one_div_div', -mul_div_assoc]
|
||||
|
||||
definition div_div_eq_div_mul' : (a / b) / c = a / (b * c) :=
|
||||
by rewrite [div_eq_mul_one_div, div_mul_div', mul_one]
|
||||
|
||||
definition div_div_div_div' : (a / b) / (c / d) = (a * d) / (b * c) :=
|
||||
by rewrite [div_div_eq_mul_div', div_mul_eq_mul_div, div_div_eq_div_mul']
|
||||
|
||||
end discrete_field
|
||||
|
||||
end algebra
|
||||
|
||||
|
||||
/-
|
||||
decidable.by_cases
|
||||
(assume Ha : a = 0, sorry)
|
||||
(assume Ha : a ≠ 0, sorry)
|
||||
-/
|
|
@ -5,14 +5,15 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: algebra.group
|
||||
Authors: Jeremy Avigad, Leonardo de Moura
|
||||
|
||||
Various multiplicative and additive structures. Partially modeled on Isabelle's library.
|
||||
Various multiplicative and additive structures.
|
||||
Ported from the standard library
|
||||
-/
|
||||
|
||||
import algebra.binary
|
||||
|
||||
open eq is_trunc binary -- note: ⁻¹ will be overloaded
|
||||
|
||||
namespace path_algebra
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
|
@ -45,77 +46,75 @@ notation 0 := !has_zero.zero
|
|||
--a second notation for the inverse, which is not overloaded
|
||||
postfix [parsing-only] `⁻¹ᵍ`:std.prec.max_plus := has_inv.inv
|
||||
|
||||
|
||||
/- semigroup -/
|
||||
|
||||
structure semigroup [class] (A : Type) extends has_mul A :=
|
||||
(carrier_hset : is_hset A)
|
||||
(is_hset_carrier : is_hset A)
|
||||
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))
|
||||
|
||||
attribute semigroup.carrier_hset [instance]
|
||||
attribute semigroup.is_hset_carrier [instance]
|
||||
|
||||
theorem mul_assoc [s : semigroup A] (a b c : A) : a * b * c = a * (b * c) :=
|
||||
theorem mul.assoc [s : semigroup A] (a b c : A) : a * b * c = a * (b * c) :=
|
||||
!semigroup.mul_assoc
|
||||
|
||||
structure comm_semigroup [class] (A : Type) extends semigroup A :=
|
||||
(mul_comm : ∀a b, mul a b = mul b a)
|
||||
|
||||
theorem mul_comm [s : comm_semigroup A] (a b : A) : a * b = b * a :=
|
||||
theorem mul.comm [s : comm_semigroup A] (a b : A) : a * b = b * a :=
|
||||
!comm_semigroup.mul_comm
|
||||
|
||||
theorem mul_left_comm [s : comm_semigroup A] (a b c : A) : a * (b * c) = b * (a * c) :=
|
||||
binary.left_comm (@mul_comm A s) (@mul_assoc A s) a b c
|
||||
theorem mul.left_comm [s : comm_semigroup A] (a b c : A) : a * (b * c) = b * (a * c) :=
|
||||
binary.left_comm (@mul.comm A s) (@mul.assoc A s) a b c
|
||||
|
||||
theorem mul_right_comm [s : comm_semigroup A] (a b c : A) : (a * b) * c = (a * c) * b :=
|
||||
binary.right_comm (@mul_comm A s) (@mul_assoc A s) a b c
|
||||
theorem mul.right_comm [s : comm_semigroup A] (a b c : A) : (a * b) * c = (a * c) * b :=
|
||||
binary.right_comm (@mul.comm A s) (@mul.assoc A s) a b c
|
||||
|
||||
structure left_cancel_semigroup [class] (A : Type) extends semigroup A :=
|
||||
(mul_left_cancel : ∀a b c, mul a b = mul a c → b = c)
|
||||
|
||||
theorem mul_left_cancel [s : left_cancel_semigroup A] {a b c : A} :
|
||||
theorem mul.left_cancel [s : left_cancel_semigroup A] {a b c : A} :
|
||||
a * b = a * c → b = c :=
|
||||
!left_cancel_semigroup.mul_left_cancel
|
||||
|
||||
structure right_cancel_semigroup [class] (A : Type) extends semigroup A :=
|
||||
(mul_right_cancel : ∀a b c, mul a b = mul c b → a = c)
|
||||
|
||||
theorem mul_right_cancel [s : right_cancel_semigroup A] {a b c : A} :
|
||||
theorem mul.right_cancel [s : right_cancel_semigroup A] {a b c : A} :
|
||||
a * b = c * b → a = c :=
|
||||
!right_cancel_semigroup.mul_right_cancel
|
||||
|
||||
|
||||
/- additive semigroup -/
|
||||
|
||||
structure add_semigroup [class] (A : Type) extends has_add A :=
|
||||
(add_assoc : ∀a b c, add (add a b) c = add a (add b c))
|
||||
|
||||
theorem add_assoc [s : add_semigroup A] (a b c : A) : a + b + c = a + (b + c) :=
|
||||
theorem add.assoc [s : add_semigroup A] (a b c : A) : a + b + c = a + (b + c) :=
|
||||
!add_semigroup.add_assoc
|
||||
|
||||
structure add_comm_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||
(add_comm : ∀a b, add a b = add b a)
|
||||
|
||||
theorem add_comm [s : add_comm_semigroup A] (a b : A) : a + b = b + a :=
|
||||
theorem add.comm [s : add_comm_semigroup A] (a b : A) : a + b = b + a :=
|
||||
!add_comm_semigroup.add_comm
|
||||
|
||||
theorem add_left_comm [s : add_comm_semigroup A] (a b c : A) :
|
||||
theorem add.left_comm [s : add_comm_semigroup A] (a b c : A) :
|
||||
a + (b + c) = b + (a + c) :=
|
||||
binary.left_comm (@add_comm A s) (@add_assoc A s) a b c
|
||||
binary.left_comm (@add.comm A s) (@add.assoc A s) a b c
|
||||
|
||||
theorem add_right_comm [s : add_comm_semigroup A] (a b c : A) : (a + b) + c = (a + c) + b :=
|
||||
binary.right_comm (@add_comm A s) (@add_assoc A s) a b c
|
||||
theorem add.right_comm [s : add_comm_semigroup A] (a b c : A) : (a + b) + c = (a + c) + b :=
|
||||
binary.right_comm (@add.comm A s) (@add.assoc A s) a b c
|
||||
|
||||
structure add_left_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||
(add_left_cancel : ∀a b c, add a b = add a c → b = c)
|
||||
|
||||
theorem add_left_cancel [s : add_left_cancel_semigroup A] {a b c : A} :
|
||||
theorem add.left_cancel [s : add_left_cancel_semigroup A] {a b c : A} :
|
||||
a + b = a + c → b = c :=
|
||||
!add_left_cancel_semigroup.add_left_cancel
|
||||
|
||||
structure add_right_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
|
||||
(add_right_cancel : ∀a b c, add a b = add c b → a = c)
|
||||
|
||||
theorem add_right_cancel [s : add_right_cancel_semigroup A] {a b c : A} :
|
||||
theorem add.right_cancel [s : add_right_cancel_semigroup A] {a b c : A} :
|
||||
a + b = c + b → a = c :=
|
||||
!add_right_cancel_semigroup.add_right_cancel
|
||||
|
||||
|
@ -130,7 +129,6 @@ theorem mul_one [s : monoid A] (a : A) : a * 1 = a := !monoid.mul_one
|
|||
|
||||
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A
|
||||
|
||||
|
||||
/- additive monoid -/
|
||||
|
||||
structure add_monoid [class] (A : Type) extends add_semigroup A, has_zero A :=
|
||||
|
@ -142,8 +140,6 @@ theorem add_zero [s : add_monoid A] (a : A) : a + 0 = a := !add_monoid.add_zero
|
|||
|
||||
structure add_comm_monoid [class] (A : Type) extends add_monoid A, add_comm_semigroup A
|
||||
|
||||
|
||||
|
||||
/- group -/
|
||||
|
||||
structure group [class] (A : Type) extends monoid A, has_inv A :=
|
||||
|
@ -156,131 +152,114 @@ section group
|
|||
variable [s : group A]
|
||||
include s
|
||||
|
||||
theorem mul_left_inv (a : A) : a⁻¹ * a = 1 := !group.mul_left_inv
|
||||
theorem mul.left_inv (a : A) : a⁻¹ * a = 1 := !group.mul_left_inv
|
||||
|
||||
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
|
||||
calc
|
||||
a⁻¹ * (a * b) = a⁻¹ * a * b : mul_assoc
|
||||
... = 1 * b : mul_left_inv
|
||||
... = b : one_mul
|
||||
by rewrite [-mul.assoc, mul.left_inv, one_mul]
|
||||
|
||||
theorem inv_mul_cancel_right (a b : A) : a * b⁻¹ * b = a :=
|
||||
calc
|
||||
a * b⁻¹ * b = a * (b⁻¹ * b) : mul_assoc
|
||||
... = a * 1 : mul_left_inv
|
||||
... = a : mul_one
|
||||
by rewrite [mul.assoc, mul.left_inv, mul_one]
|
||||
|
||||
theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
|
||||
calc
|
||||
a⁻¹ = a⁻¹ * 1 : mul_one
|
||||
... = a⁻¹ * (a * b) : H
|
||||
... = b : inv_mul_cancel_left
|
||||
by rewrite [-mul_one a⁻¹, -H, inv_mul_cancel_left]
|
||||
|
||||
theorem inv_one : 1⁻¹ = 1 := inv_eq_of_mul_eq_one (one_mul 1)
|
||||
|
||||
theorem inv_inv (a : A) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul_left_inv a)
|
||||
theorem inv_inv (a : A) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul.left_inv a)
|
||||
|
||||
theorem inv_inj {a b : A} (H : a⁻¹ = b⁻¹) : a = b :=
|
||||
calc
|
||||
a = (a⁻¹)⁻¹ : inv_inv
|
||||
... = b : inv_eq_of_mul_eq_one (H⁻¹ ▸ (mul_left_inv _))
|
||||
theorem inv.inj {a b : A} (H : a⁻¹ = b⁻¹) : a = b :=
|
||||
by rewrite [-inv_inv, H, inv_inv]
|
||||
|
||||
--theorem inv_eq_inv_iff_eq (a b : A) : a⁻¹ = b⁻¹ ↔ a = b :=
|
||||
--iff.intro (assume H, inv_inj H) (assume H, congr_arg _ H)
|
||||
theorem inv_eq_inv_iff_eq (a b : A) : a⁻¹ = b⁻¹ ↔ a = b :=
|
||||
iff.intro (assume H, inv.inj H) (assume H, ap _ H)
|
||||
|
||||
--theorem inv_eq_one_iff_eq_one (a b : A) : a⁻¹ = 1 ↔ a = 1 :=
|
||||
--inv_one ▸ !inv_eq_inv_iff_eq
|
||||
theorem inv_eq_one_iff_eq_one (a b : A) : a⁻¹ = 1 ↔ a = 1 :=
|
||||
inv_one ▸ inv_eq_inv_iff_eq a 1
|
||||
|
||||
theorem eq_inv_imp_eq_inv {a b : A} (H : a = b⁻¹) : b = a⁻¹ :=
|
||||
H⁻¹ ▸ (inv_inv b)⁻¹
|
||||
theorem eq_inv_of_eq_inv {a b : A} (H : a = b⁻¹) : b = a⁻¹ :=
|
||||
by rewrite [H, inv_inv]
|
||||
|
||||
--theorem eq_inv_iff_eq_inv (a b : A) : a = b⁻¹ ↔ b = a⁻¹ :=
|
||||
--iff.intro !eq_inv_imp_eq_inv !eq_inv_imp_eq_inv
|
||||
theorem eq_inv_iff_eq_inv (a b : A) : a = b⁻¹ ↔ b = a⁻¹ :=
|
||||
iff.intro !eq_inv_of_eq_inv !eq_inv_of_eq_inv
|
||||
|
||||
theorem mul_right_inv (a : A) : a * a⁻¹ = 1 :=
|
||||
theorem mul.right_inv (a : A) : a * a⁻¹ = 1 :=
|
||||
calc
|
||||
a * a⁻¹ = (a⁻¹)⁻¹ * a⁻¹ : inv_inv
|
||||
... = 1 : mul_left_inv
|
||||
... = 1 : mul.left_inv
|
||||
|
||||
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) = b :=
|
||||
calc
|
||||
a * (a⁻¹ * b) = a * a⁻¹ * b : mul_assoc
|
||||
... = 1 * b : mul_right_inv
|
||||
a * (a⁻¹ * b) = a * a⁻¹ * b : by rewrite mul.assoc
|
||||
... = 1 * b : mul.right_inv
|
||||
... = b : one_mul
|
||||
|
||||
theorem mul_inv_cancel_right (a b : A) : a * b * b⁻¹ = a :=
|
||||
calc
|
||||
a * b * b⁻¹ = a * (b * b⁻¹) : mul_assoc
|
||||
... = a * 1 : mul_right_inv
|
||||
a * b * b⁻¹ = a * (b * b⁻¹) : mul.assoc
|
||||
... = a * 1 : mul.right_inv
|
||||
... = a : mul_one
|
||||
|
||||
theorem inv_mul (a b : A) : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
|
||||
inv_eq_of_mul_eq_one
|
||||
(calc
|
||||
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : mul_assoc
|
||||
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : mul.assoc
|
||||
... = a * a⁻¹ : mul_inv_cancel_left
|
||||
... = 1 : mul_right_inv)
|
||||
... = 1 : mul.right_inv)
|
||||
|
||||
theorem eq_of_mul_inv_eq_one {a b : A} (H : a * b⁻¹ = 1) : a = b :=
|
||||
calc
|
||||
a = a * b⁻¹ * b : inv_mul_cancel_right
|
||||
a = a * b⁻¹ * b : by rewrite inv_mul_cancel_right
|
||||
... = 1 * b : H
|
||||
... = b : one_mul
|
||||
|
||||
-- TODO: better names for the next eight theorems? (Also for additive ones.)
|
||||
theorem eq_mul_inv_of_mul_eq {a b c : A} (H : a * b = c) : a = c * b⁻¹ :=
|
||||
H ▸ !mul_inv_cancel_right⁻¹
|
||||
theorem eq_mul_inv_of_mul_eq {a b c : A} (H : a * c = b) : a = b * c⁻¹ :=
|
||||
by rewrite [-H, mul_inv_cancel_right]
|
||||
|
||||
theorem eq_inv_mul_of_mul_eq {a b c : A} (H : a * b = c) : b = a⁻¹ * c :=
|
||||
H ▸ !inv_mul_cancel_left⁻¹
|
||||
theorem eq_inv_mul_of_mul_eq {a b c : A} (H : b * a = c) : a = b⁻¹ * c :=
|
||||
by rewrite [-H, inv_mul_cancel_left]
|
||||
|
||||
theorem inv_mul_eq_of_eq_mul {a b c : A} (H : a = b * c) : b⁻¹ * a = c :=
|
||||
H⁻¹ ▸ !inv_mul_cancel_left
|
||||
theorem inv_mul_eq_of_eq_mul {a b c : A} (H : b = a * c) : a⁻¹ * b = c :=
|
||||
by rewrite [H, inv_mul_cancel_left]
|
||||
|
||||
theorem mul_inv_eq_of_eq_mul {a b c : A} (H : a = b * c) : a * c⁻¹ = b :=
|
||||
H⁻¹ ▸ !mul_inv_cancel_right
|
||||
theorem mul_inv_eq_of_eq_mul {a b c : A} (H : a = c * b) : a * b⁻¹ = c :=
|
||||
by rewrite [H, mul_inv_cancel_right]
|
||||
|
||||
theorem eq_mul_of_mul_inv_eq {a b c : A} (H : a * b⁻¹ = c) : a = c * b :=
|
||||
theorem eq_mul_of_mul_inv_eq {a b c : A} (H : a * c⁻¹ = b) : a = b * c :=
|
||||
!inv_inv ▸ (eq_mul_inv_of_mul_eq H)
|
||||
|
||||
theorem eq_mul_of_inv_mul_eq {a b c : A} (H : a⁻¹ * b = c) : b = a * c :=
|
||||
theorem eq_mul_of_inv_mul_eq {a b c : A} (H : b⁻¹ * a = c) : a = b * c :=
|
||||
!inv_inv ▸ (eq_inv_mul_of_mul_eq H)
|
||||
|
||||
theorem mul_eq_of_eq_inv_mul {a b c : A} (H : a = b⁻¹ * c) : b * a = c :=
|
||||
theorem mul_eq_of_eq_inv_mul {a b c : A} (H : b = a⁻¹ * c) : a * b = c :=
|
||||
!inv_inv ▸ (inv_mul_eq_of_eq_mul H)
|
||||
|
||||
theorem mul_eq_of_eq_mul_inv {a b c : A} (H : a = b * c⁻¹) : a * c = b :=
|
||||
theorem mul_eq_of_eq_mul_inv {a b c : A} (H : a = c * b⁻¹) : a * b = c :=
|
||||
!inv_inv ▸ (mul_inv_eq_of_eq_mul H)
|
||||
|
||||
--theorem mul_eq_iff_eq_inv_mul (a b c : A) : a * b = c ↔ b = a⁻¹ * c :=
|
||||
--iff.intro eq_inv_mul_of_mul_eq mul_eq_of_eq_inv_mul
|
||||
theorem mul_eq_iff_eq_inv_mul (a b c : A) : a * b = c ↔ b = a⁻¹ * c :=
|
||||
iff.intro eq_inv_mul_of_mul_eq mul_eq_of_eq_inv_mul
|
||||
|
||||
--theorem mul_eq_iff_eq_mul_inv (a b c : A) : a * b = c ↔ a = c * b⁻¹ :=
|
||||
--iff.intro eq_mul_inv_of_mul_eq mul_eq_of_eq_mul_inv
|
||||
theorem mul_eq_iff_eq_mul_inv (a b c : A) : a * b = c ↔ a = c * b⁻¹ :=
|
||||
iff.intro eq_mul_inv_of_mul_eq mul_eq_of_eq_mul_inv
|
||||
|
||||
definition group.to_left_cancel_semigroup [instance] : left_cancel_semigroup A :=
|
||||
left_cancel_semigroup.mk (@group.mul A s) (@group.carrier_hset A s) (@group.mul_assoc A s)
|
||||
(take a b c,
|
||||
assume H : a * b = a * c,
|
||||
calc
|
||||
b = a⁻¹ * (a * b) : inv_mul_cancel_left
|
||||
... = a⁻¹ * (a * c) : H
|
||||
... = c : inv_mul_cancel_left)
|
||||
theorem mul_left_cancel {a b c : A} (H : a * b = a * c) : b = c :=
|
||||
by rewrite [-inv_mul_cancel_left a b, H, inv_mul_cancel_left]
|
||||
|
||||
definition group.to_right_cancel_semigroup [instance] : right_cancel_semigroup A :=
|
||||
right_cancel_semigroup.mk (@group.mul A s) (@group.carrier_hset A s) (@group.mul_assoc A s)
|
||||
(take a b c,
|
||||
assume H : a * b = c * b,
|
||||
calc
|
||||
a = (a * b) * b⁻¹ : mul_inv_cancel_right
|
||||
... = (c * b) * b⁻¹ : H
|
||||
... = c : mul_inv_cancel_right)
|
||||
theorem mul_right_cancel {a b c : A} (H : a * b = c * b) : a = c :=
|
||||
by rewrite [-mul_inv_cancel_right a b, H, mul_inv_cancel_right]
|
||||
|
||||
definition group.to_left_cancel_semigroup [instance] [coercion] [reducible] : left_cancel_semigroup A :=
|
||||
⦃ left_cancel_semigroup, s,
|
||||
mul_left_cancel := @mul_left_cancel A s ⦄
|
||||
|
||||
definition group.to_right_cancel_semigroup [instance] [coercion] [reducible] : right_cancel_semigroup A :=
|
||||
⦃ right_cancel_semigroup, s,
|
||||
mul_right_cancel := @mul_right_cancel A s ⦄
|
||||
|
||||
end group
|
||||
|
||||
structure comm_group [class] (A : Type) extends group A, comm_monoid A
|
||||
|
||||
|
||||
/- additive group -/
|
||||
|
||||
structure add_group [class] (A : Type) extends add_monoid A, has_neg A :=
|
||||
|
@ -291,120 +270,108 @@ section add_group
|
|||
variables [s : add_group A]
|
||||
include s
|
||||
|
||||
theorem add_left_inv (a : A) : -a + a = 0 := !add_group.add_left_inv
|
||||
theorem add.left_inv (a : A) : -a + a = 0 := !add_group.add_left_inv
|
||||
|
||||
theorem neg_add_cancel_left (a b : A) : -a + (a + b) = b :=
|
||||
calc
|
||||
-a + (a + b) = -a + a + b : add_assoc
|
||||
... = 0 + b : add_left_inv
|
||||
... = b : zero_add
|
||||
by rewrite [-add.assoc, add.left_inv, zero_add]
|
||||
|
||||
theorem neg_add_cancel_right (a b : A) : a + -b + b = a :=
|
||||
calc
|
||||
a + -b + b = a + (-b + b) : add_assoc
|
||||
... = a + 0 : add_left_inv
|
||||
... = a : add_zero
|
||||
by rewrite [add.assoc, add.left_inv, add_zero]
|
||||
|
||||
theorem neq_eq_of_add_eq_zero {a b : A} (H : a + b = 0) : -a = b :=
|
||||
calc
|
||||
-a = -a + 0 : add_zero
|
||||
... = -a + (a + b) : H
|
||||
... = b : neg_add_cancel_left
|
||||
theorem neg_eq_of_add_eq_zero {a b : A} (H : a + b = 0) : -a = b :=
|
||||
by rewrite [-add_zero, -H, neg_add_cancel_left]
|
||||
|
||||
theorem neg_zero : -0 = 0 := neq_eq_of_add_eq_zero (zero_add 0)
|
||||
theorem neg_zero : -0 = 0 := neg_eq_of_add_eq_zero (zero_add 0)
|
||||
|
||||
theorem neg_neg (a : A) : -(-a) = a := neq_eq_of_add_eq_zero (add_left_inv a)
|
||||
theorem neg_neg (a : A) : -(-a) = a := neg_eq_of_add_eq_zero (add.left_inv a)
|
||||
|
||||
theorem neg_inj {a b : A} (H : -a = -b) : a = b :=
|
||||
theorem eq_neg_of_add_eq_zero {a b : A} (H : a + b = 0) : a = -b :=
|
||||
by rewrite [-neg_eq_of_add_eq_zero H, neg_neg]
|
||||
|
||||
theorem neg.inj {a b : A} (H : -a = -b) : a = b :=
|
||||
calc
|
||||
a = -(-a) : neg_neg
|
||||
... = b : neq_eq_of_add_eq_zero (H⁻¹ ▸ (add_left_inv _))
|
||||
... = b : neg_eq_of_add_eq_zero (H⁻¹ ▸ (add.left_inv _))
|
||||
|
||||
--theorem neg_eq_neg_iff_eq (a b : A) : -a = -b ↔ a = b :=
|
||||
--iff.intro (assume H, neg_inj H) (assume H, congr_arg _ H)
|
||||
theorem neg_eq_neg_iff_eq (a b : A) : -a = -b ↔ a = b :=
|
||||
iff.intro (assume H, neg.inj H) (assume H, ap _ H)
|
||||
|
||||
--theorem neg_eq_zero_iff_eq_zero (a b : A) : -a = 0 ↔ a = 0 :=
|
||||
--neg_zero ▸ !neg_eq_neg_iff_eq
|
||||
theorem neg_eq_zero_iff_eq_zero (a : A) : -a = 0 ↔ a = 0 :=
|
||||
neg_zero ▸ !neg_eq_neg_iff_eq
|
||||
|
||||
theorem eq_neq_of_eq_neg {a b : A} (H : a = -b) : b = -a :=
|
||||
theorem eq_neg_of_eq_neg {a b : A} (H : a = -b) : b = -a :=
|
||||
H⁻¹ ▸ (neg_neg b)⁻¹
|
||||
|
||||
--theorem eq_neg_iff_eq_neg (a b : A) : a = -b ↔ b = -a :=
|
||||
--iff.intro !eq_neq_of_eq_neg !eq_neq_of_eq_neg
|
||||
theorem eq_neg_iff_eq_neg (a b : A) : a = -b ↔ b = -a :=
|
||||
iff.intro !eq_neg_of_eq_neg !eq_neg_of_eq_neg
|
||||
|
||||
theorem add_right_inv (a : A) : a + -a = 0 :=
|
||||
theorem add.right_inv (a : A) : a + -a = 0 :=
|
||||
calc
|
||||
a + -a = -(-a) + -a : neg_neg
|
||||
... = 0 : add_left_inv
|
||||
... = 0 : add.left_inv
|
||||
|
||||
theorem add_neg_cancel_left (a b : A) : a + (-a + b) = b :=
|
||||
calc
|
||||
a + (-a + b) = a + -a + b : add_assoc
|
||||
... = 0 + b : add_right_inv
|
||||
... = b : zero_add
|
||||
by rewrite [-add.assoc, add.right_inv, zero_add]
|
||||
|
||||
theorem add_neg_cancel_right (a b : A) : a + b + -b = a :=
|
||||
calc
|
||||
a + b + -b = a + (b + -b) : add_assoc
|
||||
... = a + 0 : add_right_inv
|
||||
... = a : add_zero
|
||||
by rewrite [add.assoc, add.right_inv, add_zero]
|
||||
|
||||
theorem neq_add_rev (a b : A) : -(a + b) = -b + -a :=
|
||||
neq_eq_of_add_eq_zero
|
||||
(calc
|
||||
a + b + (-b + -a) = a + (b + (-b + -a)) : add_assoc
|
||||
... = a + -a : add_neg_cancel_left
|
||||
... = 0 : add_right_inv)
|
||||
theorem neg_add_rev (a b : A) : -(a + b) = -b + -a :=
|
||||
neg_eq_of_add_eq_zero
|
||||
begin
|
||||
rewrite [add.assoc, add_neg_cancel_left, add.right_inv]
|
||||
end
|
||||
|
||||
theorem eq_add_neq_of_add_eq {a b c : A} (H : a + b = c) : a = c + -b :=
|
||||
-- TODO: delete these in favor of sub rules?
|
||||
theorem eq_add_neg_of_add_eq {a b c : A} (H : a + c = b) : a = b + -c :=
|
||||
H ▸ !add_neg_cancel_right⁻¹
|
||||
|
||||
theorem eq_neg_add_of_add_eq {a b c : A} (H : a + b = c) : b = -a + c :=
|
||||
theorem eq_neg_add_of_add_eq {a b c : A} (H : b + a = c) : a = -b + c :=
|
||||
H ▸ !neg_add_cancel_left⁻¹
|
||||
|
||||
theorem neg_add_eq_of_eq_add {a b c : A} (H : a = b + c) : -b + a = c :=
|
||||
theorem neg_add_eq_of_eq_add {a b c : A} (H : b = a + c) : -a + b = c :=
|
||||
H⁻¹ ▸ !neg_add_cancel_left
|
||||
|
||||
theorem add_neg_eq_of_eq_add {a b c : A} (H : a = b + c) : a + -c = b :=
|
||||
theorem add_neg_eq_of_eq_add {a b c : A} (H : a = c + b) : a + -b = c :=
|
||||
H⁻¹ ▸ !add_neg_cancel_right
|
||||
|
||||
theorem eq_add_of_add_neg_eq {a b c : A} (H : a + -b = c) : a = c + b :=
|
||||
!neg_neg ▸ (eq_add_neq_of_add_eq H)
|
||||
theorem eq_add_of_add_neg_eq {a b c : A} (H : a + -c = b) : a = b + c :=
|
||||
!neg_neg ▸ (eq_add_neg_of_add_eq H)
|
||||
|
||||
theorem eq_add_of_neg_add_eq {a b c : A} (H : -a + b = c) : b = a + c :=
|
||||
theorem eq_add_of_neg_add_eq {a b c : A} (H : -b + a = c) : a = b + c :=
|
||||
!neg_neg ▸ (eq_neg_add_of_add_eq H)
|
||||
|
||||
theorem add_eq_of_eq_neg_add {a b c : A} (H : a = -b + c) : b + a = c :=
|
||||
theorem add_eq_of_eq_neg_add {a b c : A} (H : b = -a + c) : a + b = c :=
|
||||
!neg_neg ▸ (neg_add_eq_of_eq_add H)
|
||||
|
||||
theorem add_eq_of_eq_add_neg {a b c : A} (H : a = b + -c) : a + c = b :=
|
||||
theorem add_eq_of_eq_add_neg {a b c : A} (H : a = c + -b) : a + b = c :=
|
||||
!neg_neg ▸ (add_neg_eq_of_eq_add H)
|
||||
|
||||
--theorem add_eq_iff_eq_neg_add (a b c : A) : a + b = c ↔ b = -a + c :=
|
||||
--iff.intro eq_neg_add_of_add_eq add_eq_of_eq_neg_add
|
||||
theorem add_eq_iff_eq_neg_add (a b c : A) : a + b = c ↔ b = -a + c :=
|
||||
iff.intro eq_neg_add_of_add_eq add_eq_of_eq_neg_add
|
||||
|
||||
--theorem add_eq_iff_eq_add_neg (a b c : A) : a + b = c ↔ a = c + -b :=
|
||||
--iff.intro eq_add_neq_of_add_eq add_eq_of_eq_add_neg
|
||||
theorem add_eq_iff_eq_add_neg (a b c : A) : a + b = c ↔ a = c + -b :=
|
||||
iff.intro eq_add_neg_of_add_eq add_eq_of_eq_add_neg
|
||||
|
||||
definition add_group.to_left_cancel_semigroup [instance] :
|
||||
add_left_cancel_semigroup A :=
|
||||
add_left_cancel_semigroup.mk (@add_group.add A s) (@add_group.add_assoc A s)
|
||||
(take a b c,
|
||||
assume H : a + b = a + c,
|
||||
calc
|
||||
b = -a + (a + b) : neg_add_cancel_left
|
||||
theorem add_left_cancel {a b c : A} (H : a + b = a + c) : b = c :=
|
||||
calc b = -a + (a + b) : !neg_add_cancel_left⁻¹
|
||||
... = -a + (a + c) : H
|
||||
... = c : neg_add_cancel_left)
|
||||
... = c : neg_add_cancel_left
|
||||
|
||||
definition add_group.to_add_right_cancel_semigroup [instance] :
|
||||
add_right_cancel_semigroup A :=
|
||||
add_right_cancel_semigroup.mk (@add_group.add A s) (@add_group.add_assoc A s)
|
||||
(take a b c,
|
||||
assume H : a + b = c + b,
|
||||
calc
|
||||
a = (a + b) + -b : add_neg_cancel_right
|
||||
theorem add_right_cancel {a b c : A} (H : a + b = c + b) : a = c :=
|
||||
calc a = (a + b) + -b : !add_neg_cancel_right⁻¹
|
||||
... = (c + b) + -b : H
|
||||
... = c : add_neg_cancel_right)
|
||||
... = c : add_neg_cancel_right
|
||||
|
||||
definition add_group.to_left_cancel_semigroup [instance] [coercion] [reducible] :
|
||||
add_left_cancel_semigroup A :=
|
||||
⦃ add_left_cancel_semigroup, s,
|
||||
add_left_cancel := @add_left_cancel A s ⦄
|
||||
|
||||
definition add_group.to_add_right_cancel_semigroup [instance] [coercion] [reducible] :
|
||||
add_right_cancel_semigroup A :=
|
||||
⦃ add_right_cancel_semigroup, s,
|
||||
add_right_cancel := @add_right_cancel A s ⦄
|
||||
|
||||
/- sub -/
|
||||
|
||||
|
@ -413,7 +380,9 @@ section add_group
|
|||
|
||||
infix `-` := sub
|
||||
|
||||
theorem sub_self (a : A) : a - a = 0 := !add_right_inv
|
||||
theorem sub_eq_add_neg (a b : A) : a - b = a + -b := rfl
|
||||
|
||||
theorem sub_self (a : A) : a - a = 0 := !add.right_inv
|
||||
|
||||
theorem sub_add_cancel (a b : A) : a - b + b = a := !neg_add_cancel_right
|
||||
|
||||
|
@ -421,79 +390,92 @@ section add_group
|
|||
|
||||
theorem eq_of_sub_eq_zero {a b : A} (H : a - b = 0) : a = b :=
|
||||
calc
|
||||
a = (a - b) + b : sub_add_cancel
|
||||
a = (a - b) + b : !sub_add_cancel⁻¹
|
||||
... = 0 + b : H
|
||||
... = b : zero_add
|
||||
|
||||
--theorem eq_iff_minus_eq_zero (a b : A) : a = b ↔ a - b = 0 :=
|
||||
--iff.intro (assume H, H ▸ !sub_self) (assume H, eq_of_sub_eq_zero H)
|
||||
theorem eq_iff_sub_eq_zero (a b : A) : a = b ↔ a - b = 0 :=
|
||||
iff.intro (assume H, H ▸ !sub_self) (assume H, eq_of_sub_eq_zero H)
|
||||
|
||||
theorem zero_sub (a : A) : 0 - a = -a := !zero_add
|
||||
|
||||
theorem sub_zero (a : A) : a - 0 = a := neg_zero⁻¹ ▸ !add_zero
|
||||
theorem sub_zero (a : A) : a - 0 = a := subst (eq.symm neg_zero) !add_zero
|
||||
|
||||
theorem sub_neg_eq_add (a b : A) : a - (-b) = a + b := !neg_neg ▸ idp
|
||||
theorem sub_neg_eq_add (a b : A) : a - (-b) = a + b := !neg_neg ▸ rfl
|
||||
|
||||
theorem neg_sub (a b : A) : -(a - b) = b - a :=
|
||||
neq_eq_of_add_eq_zero
|
||||
neg_eq_of_add_eq_zero
|
||||
(calc
|
||||
a - b + (b - a) = a - b + b - a : add_assoc
|
||||
a - b + (b - a) = a - b + b - a : by rewrite -add.assoc
|
||||
... = a - a : sub_add_cancel
|
||||
... = 0 : sub_self)
|
||||
|
||||
theorem add_sub (a b c : A) : a + (b - c) = a + b - c := !add_assoc⁻¹
|
||||
theorem add_sub (a b c : A) : a + (b - c) = a + b - c := !add.assoc⁻¹
|
||||
|
||||
theorem sub_add_eq_sub_sub_swap (a b c : A) : a - (b + c) = a - c - b :=
|
||||
calc
|
||||
a - (b + c) = a + (-c - b) : neq_add_rev
|
||||
... = a - c - b : add_assoc
|
||||
a - (b + c) = a + (-c - b) : neg_add_rev
|
||||
... = a - c - b : by rewrite add.assoc
|
||||
|
||||
--theorem minus_eq_iff_eq_add (a b c : A) : a - b = c ↔ a = c + b :=
|
||||
--iff.intro (assume H, eq_add_of_add_neg_eq H) (assume H, add_neg_eq_of_eq_add H)
|
||||
theorem sub_eq_iff_eq_add (a b c : A) : a - b = c ↔ a = c + b :=
|
||||
iff.intro (assume H, eq_add_of_add_neg_eq H) (assume H, add_neg_eq_of_eq_add H)
|
||||
|
||||
--theorem eq_minus_iff_add_eq (a b c : A) : a = b - c ↔ a + c = b :=
|
||||
--iff.intro (assume H, add_eq_of_eq_add_neg H) (assume H, eq_add_neq_of_add_eq H)
|
||||
theorem eq_sub_iff_add_eq (a b c : A) : a = b - c ↔ a + c = b :=
|
||||
iff.intro (assume H, add_eq_of_eq_add_neg H) (assume H, eq_add_neg_of_add_eq H)
|
||||
|
||||
--theorem minus_eq_minus_iff {a b c d : A} (H : a - b = c - d) : a = b ↔ c = d :=
|
||||
--calc
|
||||
-- a = b ↔ a - b = 0 : eq_iff_minus_eq_zero
|
||||
-- ... ↔ c - d = 0 : H ▸ !iff.refl
|
||||
-- ... ↔ c = d : iff.symm (eq_iff_minus_eq_zero c d)
|
||||
theorem eq_iff_eq_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a = b ↔ c = d :=
|
||||
calc
|
||||
a = b ↔ a - b = 0 : eq_iff_sub_eq_zero
|
||||
... = (c - d = 0) : H
|
||||
... ↔ c = d : iff.symm (eq_iff_sub_eq_zero c d)
|
||||
|
||||
theorem eq_sub_of_add_eq {a b c : A} (H : a + c = b) : a = b - c :=
|
||||
!eq_add_neg_of_add_eq H
|
||||
|
||||
theorem sub_eq_of_eq_add {a b c : A} (H : a = c + b) : a - b = c :=
|
||||
!add_neg_eq_of_eq_add H
|
||||
|
||||
theorem eq_add_of_sub_eq {a b c : A} (H : a - c = b) : a = b + c :=
|
||||
eq_add_of_add_neg_eq H
|
||||
|
||||
theorem add_eq_of_eq_sub {a b c : A} (H : a = c - b) : a + b = c :=
|
||||
add_eq_of_eq_add_neg H
|
||||
end add_group
|
||||
|
||||
structure add_comm_group [class] (A : Type) extends add_group A, add_comm_monoid A
|
||||
|
||||
section add_comm_group
|
||||
|
||||
variable [s : add_comm_group A]
|
||||
include s
|
||||
|
||||
theorem sub_add_eq_sub_sub (a b c : A) : a - (b + c) = a - b - c :=
|
||||
!add_comm ▸ !sub_add_eq_sub_sub_swap
|
||||
!add.comm ▸ !sub_add_eq_sub_sub_swap
|
||||
|
||||
theorem neq_add_eq_sub (a b : A) : -a + b = b - a := !add_comm
|
||||
theorem neg_add_eq_sub (a b : A) : -a + b = b - a := !add.comm
|
||||
|
||||
theorem neg_add_distrib (a b : A) : -(a + b) = -a + -b := !add_comm ▸ !neq_add_rev
|
||||
theorem neg_add (a b : A) : -(a + b) = -a + -b := add.comm (-b) (-a) ▸ neg_add_rev a b
|
||||
|
||||
theorem sub_add_eq_add_sub (a b c : A) : a - b + c = a + c - b := !add_right_comm
|
||||
theorem sub_add_eq_add_sub (a b c : A) : a - b + c = a + c - b := !add.right_comm
|
||||
|
||||
theorem sub_sub (a b c : A) : a - b - c = a - (b + c) :=
|
||||
calc
|
||||
a - b - c = a + (-b + -c) : add_assoc
|
||||
... = a + -(b + c) : neg_add_distrib
|
||||
... = a - (b + c) : idp
|
||||
by rewrite [▸ a + -b + -c = _, add.assoc, -neg_add]
|
||||
|
||||
theorem add_sub_add_left_eq_sub (a b c : A) : (c + a) - (c + b) = a - b :=
|
||||
calc
|
||||
(c + a) - (c + b) = c + a - c - b : sub_add_eq_sub_sub
|
||||
... = a + c - c - b : add_comm a c
|
||||
... = a - b : add_sub_cancel
|
||||
by rewrite [sub_add_eq_sub_sub, (add.comm c a), add_sub_cancel]
|
||||
|
||||
theorem eq_sub_of_add_eq' {a b c : A} (H : c + a = b) : a = b - c :=
|
||||
!eq_sub_of_add_eq (!add.comm ▸ H)
|
||||
|
||||
theorem sub_eq_of_eq_add' {a b c : A} (H : a = b + c) : a - b = c :=
|
||||
!sub_eq_of_eq_add (!add.comm ▸ H)
|
||||
|
||||
theorem eq_add_of_sub_eq' {a b c : A} (H : a - b = c) : a = b + c :=
|
||||
!add.comm ▸ eq_add_of_sub_eq H
|
||||
|
||||
theorem add_eq_of_eq_sub' {a b c : A} (H : b = c - a) : a + b = c :=
|
||||
!add.comm ▸ add_eq_of_eq_sub H
|
||||
end add_comm_group
|
||||
|
||||
|
||||
/- bundled structures -/
|
||||
structure Semigroup :=
|
||||
(carrier : Type) (struct : semigroup carrier)
|
||||
|
@ -567,4 +549,4 @@ structure AddCommGroup :=
|
|||
attribute AddCommGroup.carrier [coercion]
|
||||
attribute AddCommGroup.struct [instance]
|
||||
|
||||
end path_algebra
|
||||
end algebra
|
||||
|
|
355
hott/algebra/order.hlean
Normal file
355
hott/algebra/order.hlean
Normal file
|
@ -0,0 +1,355 @@
|
|||
/-
|
||||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.order
|
||||
Author: Jeremy Avigad
|
||||
|
||||
Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also
|
||||
consider structures with both, where the two are related by
|
||||
|
||||
x < y ↔ (x ≤ y × x ≠ y) (order_pair)
|
||||
x ≤ y ↔ (x < y ⊎ x = y) (strong_order_pair)
|
||||
|
||||
These might not hold constructively in some applications, but we can define additional structures
|
||||
with both < and ≤ as needed.
|
||||
Ported from the standard library
|
||||
-/
|
||||
|
||||
--import logic.eq logic.connectives
|
||||
open core prod
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
/- overloaded symbols -/
|
||||
|
||||
structure has_le.{l} [class] (A : Type.{l}) : Type.{l+1} :=
|
||||
(le : A → A → Type.{l})
|
||||
|
||||
structure has_lt [class] (A : Type) :=
|
||||
(lt : A → A → Type₀)
|
||||
|
||||
infixl `<=` := has_le.le
|
||||
infixl `≤` := has_le.le
|
||||
infixl `<` := has_lt.lt
|
||||
|
||||
definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a
|
||||
notation a ≥ b := has_le.ge a b
|
||||
notation a >= b := has_le.ge a b
|
||||
|
||||
definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a
|
||||
notation a > b := has_lt.gt a b
|
||||
|
||||
/- weak orders -/
|
||||
|
||||
structure weak_order [class] (A : Type) extends has_le A :=
|
||||
(le_refl : Πa, le a a)
|
||||
(le_trans : Πa b c, le a b → le b c → le a c)
|
||||
(le_antisymm : Πa b, le a b → le b a → a = b)
|
||||
|
||||
section
|
||||
variable [s : weak_order A]
|
||||
include s
|
||||
|
||||
definition le.refl (a : A) : a ≤ a := !weak_order.le_refl
|
||||
|
||||
definition le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
|
||||
|
||||
definition ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1
|
||||
|
||||
definition le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm
|
||||
end
|
||||
|
||||
structure linear_weak_order [class] (A : Type) extends weak_order A : Type :=
|
||||
(le_total : Πa b, le a b ⊎ le b a)
|
||||
|
||||
definition le.total [s : linear_weak_order A] (a b : A) : a ≤ b ⊎ b ≤ a :=
|
||||
!linear_weak_order.le_total
|
||||
|
||||
/- strict orders -/
|
||||
|
||||
structure strict_order [class] (A : Type) extends has_lt A :=
|
||||
(lt_irrefl : Πa, ¬ lt a a)
|
||||
(lt_trans : Πa b c, lt a b → lt b c → lt a c)
|
||||
|
||||
section
|
||||
variable [s : strict_order A]
|
||||
include s
|
||||
|
||||
definition lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl
|
||||
|
||||
definition lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
|
||||
|
||||
definition gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1
|
||||
|
||||
definition ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b :=
|
||||
assume eq_ab : a = b,
|
||||
show empty, from lt.irrefl b (eq_ab ▸ lt_ab)
|
||||
|
||||
definition ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b :=
|
||||
ne.symm (ne_of_lt gt_ab)
|
||||
|
||||
definition lt.asymm {a b : A} (H : a < b) : ¬ b < a :=
|
||||
assume H1 : b < a, lt.irrefl _ (lt.trans H H1)
|
||||
end
|
||||
|
||||
/- well-founded orders -/
|
||||
|
||||
-- TODO: do these duplicate what Leo has done? if so, eliminate
|
||||
|
||||
structure wf_strict_order [class] (A : Type) extends strict_order A :=
|
||||
(wf_rec : ΠP : A → Type, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x)
|
||||
|
||||
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
|
||||
(x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x :=
|
||||
wf_strict_order.wf_rec P H x
|
||||
|
||||
definition wf.ind_on := @wf.rec_on
|
||||
|
||||
/- structures with a weak and a strict order -/
|
||||
|
||||
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
|
||||
(lt_iff_le_and_ne : Πa b, lt a b ↔ (le a b × a ≠ b))
|
||||
|
||||
section
|
||||
variable [s : order_pair A]
|
||||
variables {a b c : A}
|
||||
include s
|
||||
|
||||
definition lt_iff_le_and_ne : a < b ↔ (a ≤ b × a ≠ b) :=
|
||||
!order_pair.lt_iff_le_and_ne
|
||||
|
||||
definition le_of_lt (H : a < b) : a ≤ b :=
|
||||
pr1 (iff.mp lt_iff_le_and_ne H)
|
||||
|
||||
definition lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
|
||||
iff.mp (iff.symm lt_iff_le_and_ne) (pair H1 H2)
|
||||
|
||||
private definition lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a :=
|
||||
assume H : a < a,
|
||||
have H1 : a ≠ a, from pr2 (iff.mp !lt_iff_le_and_ne H),
|
||||
H1 rfl
|
||||
|
||||
private definition lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c :=
|
||||
have le_ab : a ≤ b, from le_of_lt lt_ab,
|
||||
have le_bc : b ≤ c, from le_of_lt lt_bc,
|
||||
have le_ac : a ≤ c, from le.trans le_ab le_bc,
|
||||
have ne_ac : a ≠ c, from
|
||||
assume eq_ac : a = c,
|
||||
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
|
||||
have eq_ab : a = b, from le.antisymm le_ab le_ba,
|
||||
have ne_ab : a ≠ b, from pr2 (iff.mp lt_iff_le_and_ne lt_ab),
|
||||
ne_ab eq_ab,
|
||||
show a < c, from lt_of_le_of_ne le_ac ne_ac
|
||||
|
||||
definition order_pair.to_strict_order [instance] [coercion] [reducible] : strict_order A :=
|
||||
⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄
|
||||
|
||||
definition lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c :=
|
||||
assume lt_ab : a < b,
|
||||
assume le_bc : b ≤ c,
|
||||
have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc,
|
||||
have ne_ac : a ≠ c, from
|
||||
assume eq_ac : a = c,
|
||||
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
|
||||
have eq_ab : a = b, from le.antisymm (le_of_lt lt_ab) le_ba,
|
||||
show empty, from ne_of_lt lt_ab eq_ab,
|
||||
show a < c, from lt_of_le_of_ne le_ac ne_ac
|
||||
|
||||
definition lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c :=
|
||||
assume le_ab : a ≤ b,
|
||||
assume lt_bc : b < c,
|
||||
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc),
|
||||
have ne_ac : a ≠ c, from
|
||||
assume eq_ac : a = c,
|
||||
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
|
||||
have eq_bc : b = c, from le.antisymm (le_of_lt lt_bc) le_cb,
|
||||
show empty, from ne_of_lt lt_bc eq_bc,
|
||||
show a < c, from lt_of_le_of_ne le_ac ne_ac
|
||||
|
||||
definition gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1
|
||||
|
||||
definition gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1
|
||||
|
||||
definition not_le_of_lt (H : a < b) : ¬ b ≤ a :=
|
||||
assume H1 : b ≤ a,
|
||||
lt.irrefl _ (lt_of_lt_of_le H H1)
|
||||
|
||||
definition not_lt_of_le (H : a ≤ b) : ¬ b < a :=
|
||||
assume H1 : b < a,
|
||||
lt.irrefl _ (lt_of_le_of_lt H H1)
|
||||
end
|
||||
|
||||
structure strong_order_pair [class] (A : Type) extends order_pair A :=
|
||||
(le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b)
|
||||
|
||||
definition le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b :=
|
||||
!strong_order_pair.le_iff_lt_or_eq
|
||||
|
||||
definition lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b :=
|
||||
iff.mp le_iff_lt_or_eq le_ab
|
||||
|
||||
-- We can also construct a strong order pair by defining a strict order, and then defining
|
||||
-- x ≤ y ↔ x < y ⊎ x = y
|
||||
|
||||
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
|
||||
(le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b)
|
||||
|
||||
private definition le_refl (s : strict_order_with_le A) (a : A) : a ≤ a :=
|
||||
iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (sum.inr rfl)
|
||||
|
||||
private definition le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c :=
|
||||
sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
|
||||
(assume lt_ab : a < b,
|
||||
sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
|
||||
(assume lt_bc : b < c,
|
||||
iff.elim_right
|
||||
!strict_order_with_le.le_iff_lt_or_eq (sum.inl (lt.trans lt_ab lt_bc)))
|
||||
(assume eq_bc : b = c, eq_bc ▸ le_ab))
|
||||
(assume eq_ab : a = b,
|
||||
eq_ab⁻¹ ▸ le_bc)
|
||||
|
||||
private definition le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b :=
|
||||
sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
|
||||
(assume lt_ab : a < b,
|
||||
sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
|
||||
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
|
||||
(assume eq_ba : b = a, eq_ba⁻¹))
|
||||
(assume eq_ab : a = b, eq_ab)
|
||||
|
||||
private definition lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b × a ≠ b :=
|
||||
iff.intro
|
||||
(assume lt_ab : a < b,
|
||||
have le_ab : a ≤ b, from
|
||||
iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (sum.inl lt_ab),
|
||||
show a ≤ b × a ≠ b, from pair le_ab (ne_of_lt lt_ab))
|
||||
(assume H : a ≤ b × a ≠ b,
|
||||
have H1 : a < b ⊎ a = b, from
|
||||
iff.mp !strict_order_with_le.le_iff_lt_or_eq (pr1 H),
|
||||
show a < b, from sum_resolve_left H1 (pr2 H))
|
||||
|
||||
definition strict_order_with_le.to_order_pair [instance] [coercion] [reducible] [s : strict_order_with_le A] :
|
||||
strong_order_pair A :=
|
||||
⦃ strong_order_pair, s,
|
||||
le_refl := le_refl s,
|
||||
le_trans := le_trans s,
|
||||
le_antisymm := le_antisymm s,
|
||||
lt_iff_le_and_ne := lt_iff_le_ne s ⦄
|
||||
|
||||
/- linear orders -/
|
||||
|
||||
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
|
||||
|
||||
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A,
|
||||
linear_weak_order A
|
||||
|
||||
section
|
||||
variable [s : linear_strong_order_pair A]
|
||||
variables (a b c : A)
|
||||
include s
|
||||
|
||||
definition lt.trichotomy : a < b ⊎ a = b ⊎ b < a :=
|
||||
sum.rec_on (le.total a b)
|
||||
(assume H : a ≤ b,
|
||||
sum.rec_on (iff.mp !le_iff_lt_or_eq H) (assume H1, sum.inl H1) (assume H1, sum.inr (sum.inl H1)))
|
||||
(assume H : b ≤ a,
|
||||
sum.rec_on (iff.mp !le_iff_lt_or_eq H)
|
||||
(assume H1, sum.inr (sum.inr H1))
|
||||
(assume H1, sum.inr (sum.inl (H1⁻¹))))
|
||||
|
||||
definition lt.by_cases {a b : A} {P : Type}
|
||||
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
|
||||
sum.rec_on !lt.trichotomy
|
||||
(assume H, H1 H)
|
||||
(assume H, sum.rec_on H (assume H', H2 H') (assume H', H3 H'))
|
||||
|
||||
definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion] [reducible]
|
||||
: linear_order_pair A :=
|
||||
⦃ linear_order_pair, s ⦄
|
||||
|
||||
definition le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a :=
|
||||
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
|
||||
|
||||
definition lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a :=
|
||||
lt.by_cases
|
||||
(assume H', absurd (le_of_lt H') H)
|
||||
(assume H', absurd (H' ▸ !le.refl) H)
|
||||
(assume H', H')
|
||||
|
||||
definition lt_or_ge : a < b ⊎ a ≥ b :=
|
||||
lt.by_cases
|
||||
(assume H1 : a < b, sum.inl H1)
|
||||
(assume H1 : a = b, sum.inr (H1 ▸ le.refl a))
|
||||
(assume H1 : a > b, sum.inr (le_of_lt H1))
|
||||
|
||||
definition le_or_gt : a ≤ b ⊎ a > b :=
|
||||
!sum.swap (lt_or_ge b a)
|
||||
|
||||
definition lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b :=
|
||||
lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1)
|
||||
end
|
||||
|
||||
structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A :=
|
||||
(decidable_lt : decidable_rel lt)
|
||||
|
||||
section
|
||||
variable [s : decidable_linear_order A]
|
||||
variables {a b c d : A}
|
||||
include s
|
||||
open decidable
|
||||
|
||||
definition decidable_lt [instance] : decidable (a < b) :=
|
||||
@decidable_linear_order.decidable_lt _ _ _ _
|
||||
|
||||
definition decidable_le [instance] : decidable (a ≤ b) :=
|
||||
by_cases
|
||||
(assume H : a < b, inl (le_of_lt H))
|
||||
(assume H : ¬ a < b,
|
||||
have H1 : b ≤ a, from le_of_not_lt H,
|
||||
by_cases
|
||||
(assume H2 : b < a, inr (not_le_of_lt H2))
|
||||
(assume H2 : ¬ b < a, inl (le_of_not_lt H2)))
|
||||
|
||||
definition decidable_eq [instance] : decidable (a = b) :=
|
||||
by_cases
|
||||
(assume H : a ≤ b,
|
||||
by_cases
|
||||
(assume H1 : b ≤ a, inl (le.antisymm H H1))
|
||||
(assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a))))
|
||||
(assume H : ¬ a ≤ b,
|
||||
(inr (assume H1 : a = b, H (H1 ▸ !le.refl))))
|
||||
|
||||
-- testing equality first may result in more definitional equalities
|
||||
definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B :=
|
||||
if a = b then t_eq else (if a < b then t_lt else t_gt)
|
||||
|
||||
definition lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) :
|
||||
lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H
|
||||
|
||||
definition lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) :
|
||||
lt.cases a b t_lt t_eq t_gt = t_lt :=
|
||||
if_neg (ne_of_lt H) ⬝ if_pos H
|
||||
|
||||
definition lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) :
|
||||
lt.cases a b t_lt t_eq t_gt = t_gt :=
|
||||
if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H)
|
||||
end
|
||||
|
||||
end algebra
|
||||
|
||||
/-
|
||||
For reference, these are all the transitivity rules defined in this file:
|
||||
calc_trans le.trans
|
||||
calc_trans lt.trans
|
||||
|
||||
calc_trans lt_of_lt_of_le
|
||||
calc_trans lt_of_le_of_lt
|
||||
|
||||
calc_trans ge.trans
|
||||
calc_trans gt.trans
|
||||
|
||||
calc_trans gt_of_gt_of_ge
|
||||
calc_trans gt_of_ge_of_gt
|
||||
-/
|
550
hott/algebra/ordered_group.hlean
Normal file
550
hott/algebra/ordered_group.hlean
Normal file
|
@ -0,0 +1,550 @@
|
|||
/-
|
||||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.ordered_group
|
||||
Authors: Jeremy Avigad
|
||||
|
||||
Partially ordered additive groups, modeled on Isabelle's library. We could refine the structures,
|
||||
but we would have to declare more inheritance paths.
|
||||
Ported from the standard library
|
||||
-/
|
||||
|
||||
import .order .group
|
||||
open core
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
/- partially ordered monoids, such as the natural numbers -/
|
||||
|
||||
structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A,
|
||||
add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A :=
|
||||
(add_le_add_left : Πa b, le a b → Πc, le (add c a) (add c b))
|
||||
(le_of_add_le_add_left : Πa b c, le (add a b) (add a c) → le b c)
|
||||
|
||||
section
|
||||
variables [s : ordered_cancel_comm_monoid A]
|
||||
variables {a b c d e : A}
|
||||
include s
|
||||
|
||||
definition add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b :=
|
||||
!ordered_cancel_comm_monoid.add_le_add_left H c
|
||||
|
||||
definition add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c :=
|
||||
(add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c)
|
||||
|
||||
definition add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d :=
|
||||
le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b)
|
||||
|
||||
definition add_lt_add_left (H : a < b) (c : A) : c + a < c + b :=
|
||||
have H1 : c + a ≤ c + b, from add_le_add_left (le_of_lt H) c,
|
||||
have H2 : c + a ≠ c + b, from
|
||||
take H3 : c + a = c + b,
|
||||
have H4 : a = b, from add.left_cancel H3,
|
||||
ne_of_lt H H4,
|
||||
lt_of_le_of_ne H1 H2
|
||||
|
||||
definition add_lt_add_right (H : a < b) (c : A) : a + c < b + c :=
|
||||
begin
|
||||
rewrite [add.comm, {b + _}add.comm],
|
||||
exact (add_lt_add_left H c)
|
||||
end
|
||||
|
||||
definition le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b :=
|
||||
begin
|
||||
have H1 : a + b ≥ a + 0, from add_le_add_left H a,
|
||||
rewrite add_zero at H1,
|
||||
exact H1
|
||||
end
|
||||
|
||||
definition le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a :=
|
||||
begin
|
||||
have H1 : 0 + a ≤ b + a, from add_le_add_right H a,
|
||||
rewrite zero_add at H1,
|
||||
exact H1
|
||||
end
|
||||
|
||||
definition add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d :=
|
||||
lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b)
|
||||
|
||||
definition add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d :=
|
||||
lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b)
|
||||
|
||||
definition add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d :=
|
||||
lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b)
|
||||
|
||||
definition lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a
|
||||
|
||||
definition lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a
|
||||
|
||||
-- here we start using le_of_add_le_add_left.
|
||||
definition le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c :=
|
||||
!ordered_cancel_comm_monoid.le_of_add_le_add_left H
|
||||
|
||||
definition le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c :=
|
||||
le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end)
|
||||
|
||||
definition lt_of_add_lt_add_left (H : a + b < a + c) : b < c :=
|
||||
have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H),
|
||||
have H2 : b ≠ c, from
|
||||
assume H3 : b = c, lt.irrefl _ (H3 ▸ H),
|
||||
lt_of_le_of_ne H1 H2
|
||||
|
||||
definition lt_of_add_lt_add_right (H : a + b < c + b) : a < c :=
|
||||
lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H)
|
||||
|
||||
definition add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c :=
|
||||
iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _)
|
||||
|
||||
definition add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c :=
|
||||
iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _)
|
||||
|
||||
definition add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c :=
|
||||
iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _)
|
||||
|
||||
definition add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c :=
|
||||
iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _)
|
||||
|
||||
-- here we start using properties of zero.
|
||||
definition add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b :=
|
||||
!zero_add ▸ (add_le_add Ha Hb)
|
||||
|
||||
definition add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b :=
|
||||
!zero_add ▸ (add_lt_add Ha Hb)
|
||||
|
||||
definition add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b :=
|
||||
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
|
||||
|
||||
definition add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b :=
|
||||
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
|
||||
|
||||
definition add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 :=
|
||||
!zero_add ▸ (add_le_add Ha Hb)
|
||||
|
||||
definition add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 :=
|
||||
!zero_add ▸ (add_lt_add Ha Hb)
|
||||
|
||||
definition add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 :=
|
||||
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
|
||||
|
||||
definition add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 :=
|
||||
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
|
||||
|
||||
-- TODO: add nonpos version (will be easier with simplifier)
|
||||
definition add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg
|
||||
(Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 × b = 0 :=
|
||||
iff.intro
|
||||
(assume Hab : a + b = 0,
|
||||
have Ha' : a ≤ 0, from
|
||||
calc
|
||||
a = a + 0 : by rewrite add_zero
|
||||
... ≤ a + b : add_le_add_left Hb
|
||||
... = 0 : Hab,
|
||||
have Haz : a = 0, from le.antisymm Ha' Ha,
|
||||
have Hb' : b ≤ 0, from
|
||||
calc
|
||||
b = 0 + b : by rewrite zero_add
|
||||
... ≤ a + b : add_le_add_right Ha
|
||||
... = 0 : Hab,
|
||||
have Hbz : b = 0, from le.antisymm Hb' Hb,
|
||||
pair Haz Hbz)
|
||||
(assume Hab : a = 0 × b = 0,
|
||||
match Hab with
|
||||
| pair Ha' Hb' := by rewrite [Ha', Hb', add_zero]
|
||||
end)
|
||||
|
||||
definition le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c :=
|
||||
!zero_add ▸ add_le_add Ha Hbc
|
||||
|
||||
definition le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a :=
|
||||
!add_zero ▸ add_le_add Hbc Ha
|
||||
|
||||
definition lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c :=
|
||||
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
|
||||
|
||||
definition lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a :=
|
||||
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
|
||||
|
||||
definition add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c :=
|
||||
!zero_add ▸ add_le_add Ha Hbc
|
||||
|
||||
definition add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c :=
|
||||
!add_zero ▸ add_le_add Hbc Ha
|
||||
|
||||
definition add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c :=
|
||||
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
|
||||
|
||||
definition add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c :=
|
||||
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
|
||||
|
||||
definition lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c :=
|
||||
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
|
||||
|
||||
definition lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a :=
|
||||
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
|
||||
|
||||
definition lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c :=
|
||||
!zero_add ▸ add_lt_add Ha Hbc
|
||||
|
||||
definition lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a :=
|
||||
!add_zero ▸ add_lt_add Hbc Ha
|
||||
|
||||
definition add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c :=
|
||||
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
|
||||
|
||||
definition add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c :=
|
||||
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
|
||||
|
||||
definition add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c :=
|
||||
!zero_add ▸ add_lt_add Ha Hbc
|
||||
|
||||
definition add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c :=
|
||||
!add_zero ▸ add_lt_add Hbc Ha
|
||||
end
|
||||
|
||||
-- TODO: add properties of max and min
|
||||
|
||||
/- partially ordered groups -/
|
||||
|
||||
structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A :=
|
||||
(add_le_add_left : Πa b, le a b → Πc, le (add c a) (add c b))
|
||||
|
||||
definition ordered_comm_group.le_of_add_le_add_left [s : ordered_comm_group A] {a b c : A} (H : a + b ≤ a + c) : b ≤ c :=
|
||||
assert H' : -a + (a + b) ≤ -a + (a + c), from ordered_comm_group.add_le_add_left _ _ H _,
|
||||
by rewrite *neg_add_cancel_left at H'; exact H'
|
||||
|
||||
definition ordered_comm_group.to_ordered_cancel_comm_monoid [instance] [coercion] [reducible]
|
||||
[s : ordered_comm_group A] : ordered_cancel_comm_monoid A :=
|
||||
⦃ ordered_cancel_comm_monoid, s,
|
||||
add_left_cancel := @add.left_cancel A s,
|
||||
add_right_cancel := @add.right_cancel A s,
|
||||
le_of_add_le_add_left := @ordered_comm_group.le_of_add_le_add_left A s ⦄
|
||||
|
||||
section
|
||||
variables [s : ordered_comm_group A] (a b c d e : A)
|
||||
include s
|
||||
|
||||
definition neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a :=
|
||||
have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H),
|
||||
!add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b)
|
||||
|
||||
definition le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b :=
|
||||
neg_neg a ▸ neg_neg b ▸ neg_le_neg H
|
||||
|
||||
definition neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a :=
|
||||
iff.intro le_of_neg_le_neg neg_le_neg
|
||||
|
||||
definition nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a :=
|
||||
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
|
||||
|
||||
definition neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 :=
|
||||
neg_zero ▸ neg_le_neg H
|
||||
|
||||
definition neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a :=
|
||||
iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg
|
||||
|
||||
definition nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 :=
|
||||
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
|
||||
|
||||
definition neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a :=
|
||||
neg_zero ▸ neg_le_neg H
|
||||
|
||||
definition neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 :=
|
||||
iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos
|
||||
|
||||
definition neg_lt_neg {a b : A} (H : a < b) : -b < -a :=
|
||||
have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H),
|
||||
!add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b)
|
||||
|
||||
definition lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b :=
|
||||
neg_neg a ▸ neg_neg b ▸ neg_lt_neg H
|
||||
|
||||
definition neg_lt_neg_iff_lt : -a < -b ↔ b < a :=
|
||||
iff.intro lt_of_neg_lt_neg neg_lt_neg
|
||||
|
||||
definition pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a :=
|
||||
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
|
||||
|
||||
definition neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 :=
|
||||
neg_zero ▸ neg_lt_neg H
|
||||
|
||||
definition neg_neg_iff_pos : -a < 0 ↔ 0 < a :=
|
||||
iff.intro pos_of_neg_neg neg_neg_of_pos
|
||||
|
||||
definition neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 :=
|
||||
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
|
||||
|
||||
definition neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a :=
|
||||
neg_zero ▸ neg_lt_neg H
|
||||
|
||||
definition neg_pos_iff_neg : 0 < -a ↔ a < 0 :=
|
||||
iff.intro neg_of_neg_pos neg_pos_of_neg
|
||||
|
||||
definition le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le
|
||||
|
||||
definition neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le
|
||||
|
||||
definition lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt
|
||||
|
||||
definition neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt
|
||||
|
||||
definition sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff
|
||||
|
||||
definition sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff
|
||||
|
||||
definition sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff
|
||||
|
||||
definition sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff
|
||||
|
||||
definition add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c :=
|
||||
have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff),
|
||||
!neg_add_cancel_left ▸ H
|
||||
|
||||
definition add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a :=
|
||||
by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add
|
||||
|
||||
definition add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b :=
|
||||
have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff),
|
||||
!add_neg_cancel_right ▸ H
|
||||
|
||||
definition le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c :=
|
||||
assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
|
||||
by rewrite neg_add_cancel_left at H; exact H
|
||||
|
||||
definition le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c :=
|
||||
by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le
|
||||
|
||||
definition le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b :=
|
||||
assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
|
||||
by rewrite add_neg_cancel_right at H; exact H
|
||||
|
||||
definition add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c :=
|
||||
assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
|
||||
begin rewrite neg_add_cancel_left at H, exact H end
|
||||
|
||||
definition add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c :=
|
||||
by rewrite add.comm; apply add_lt_iff_lt_neg_add_left
|
||||
|
||||
definition add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a :=
|
||||
begin
|
||||
rewrite [sub_eq_add_neg, {c+_}add.comm],
|
||||
apply add_lt_iff_lt_neg_add_left
|
||||
end
|
||||
|
||||
definition add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b :=
|
||||
assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
|
||||
by rewrite add_neg_cancel_right at H; exact H
|
||||
|
||||
definition lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c :=
|
||||
assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
|
||||
by rewrite neg_add_cancel_left at H; exact H
|
||||
|
||||
definition lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b :=
|
||||
by rewrite add.comm; apply lt_add_iff_neg_add_lt_left
|
||||
|
||||
definition lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c :=
|
||||
by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left
|
||||
|
||||
definition lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b :=
|
||||
by rewrite add.comm; apply lt_add_iff_sub_lt_left
|
||||
|
||||
-- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0
|
||||
definition le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d :=
|
||||
calc
|
||||
a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b)
|
||||
... = (c - d ≤ 0) : by rewrite H
|
||||
... ↔ c ≤ d : sub_nonpos_iff_le c d
|
||||
|
||||
definition lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d :=
|
||||
calc
|
||||
a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b)
|
||||
... = (c - d < 0) : by rewrite H
|
||||
... ↔ c < d : sub_neg_iff_lt c d
|
||||
|
||||
definition sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a :=
|
||||
add_le_add_left (neg_le_neg H) c
|
||||
|
||||
definition sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c)
|
||||
|
||||
definition sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c :=
|
||||
add_le_add Hab (neg_le_neg Hcd)
|
||||
|
||||
definition sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a :=
|
||||
add_lt_add_left (neg_lt_neg H) c
|
||||
|
||||
definition sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c)
|
||||
|
||||
definition sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c :=
|
||||
add_lt_add Hab (neg_lt_neg Hcd)
|
||||
|
||||
definition sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c :=
|
||||
add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd)
|
||||
|
||||
definition sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c :=
|
||||
add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd)
|
||||
|
||||
definition sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a :=
|
||||
calc
|
||||
a - b = a + -b : rfl
|
||||
... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H)
|
||||
... = a : by rewrite add_zero
|
||||
|
||||
definition sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a :=
|
||||
calc
|
||||
a - b = a + -b : rfl
|
||||
... < a + 0 : add_lt_add_left (neg_neg_of_pos H)
|
||||
... = a : by rewrite add_zero
|
||||
end
|
||||
|
||||
structure decidable_linear_ordered_comm_group [class] (A : Type)
|
||||
extends ordered_comm_group A, decidable_linear_order A
|
||||
|
||||
section
|
||||
variables [s : decidable_linear_ordered_comm_group A]
|
||||
variables {a b c d e : A}
|
||||
include s
|
||||
|
||||
definition eq_zero_of_neg_eq (H : -a = a) : a = 0 :=
|
||||
lt.by_cases
|
||||
(assume H1 : a < 0,
|
||||
have H2: a > 0, from H ▸ neg_pos_of_neg H1,
|
||||
absurd H1 (lt.asymm H2))
|
||||
(assume H1 : a = 0, H1)
|
||||
(assume H1 : a > 0,
|
||||
have H2: a < 0, from H ▸ neg_neg_of_pos H1,
|
||||
absurd H1 (lt.asymm H2))
|
||||
|
||||
definition abs (a : A) : A := if 0 ≤ a then a else -a
|
||||
|
||||
definition abs_of_nonneg (H : a ≥ 0) : abs a = a := if_pos H
|
||||
|
||||
definition abs_of_pos (H : a > 0) : abs a = a := if_pos (le_of_lt H)
|
||||
|
||||
definition abs_of_neg (H : a < 0) : abs a = -a := if_neg (not_le_of_lt H)
|
||||
|
||||
definition abs_zero : abs 0 = 0 := abs_of_nonneg (le.refl _)
|
||||
|
||||
definition abs_of_nonpos (H : a ≤ 0) : abs a = -a :=
|
||||
decidable.by_cases
|
||||
(assume H1 : a = 0, by rewrite [H1, abs_zero, neg_zero])
|
||||
(assume H1 : a ≠ 0,
|
||||
have H2 : a < 0, from lt_of_le_of_ne H H1,
|
||||
abs_of_neg H2)
|
||||
|
||||
definition abs_neg (a : A) : abs (-a) = abs a :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H1 : 0 ≤ a, by rewrite [abs_of_nonpos (neg_nonpos_of_nonneg H1), neg_neg, abs_of_nonneg H1])
|
||||
(assume H1 : a ≤ 0, by rewrite [abs_of_nonneg (neg_nonneg_of_nonpos H1), abs_of_nonpos H1])
|
||||
|
||||
definition abs_nonneg (a : A) : abs a ≥ 0 :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H)
|
||||
(assume H : a ≤ 0,
|
||||
calc
|
||||
0 ≤ -a : neg_nonneg_of_nonpos H
|
||||
... = abs a : abs_of_nonpos H)
|
||||
|
||||
definition abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg
|
||||
|
||||
definition le_abs_self (a : A) : a ≤ abs a :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl)
|
||||
(assume H : a ≤ 0, le.trans H !abs_nonneg)
|
||||
|
||||
definition neg_le_abs_self (a : A) : -a ≤ abs a :=
|
||||
!abs_neg ▸ !le_abs_self
|
||||
|
||||
definition eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 :=
|
||||
have H1 : a ≤ 0, from H ▸ le_abs_self a,
|
||||
have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a),
|
||||
le.antisymm H1 (nonneg_of_neg_nonpos H2)
|
||||
|
||||
definition abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 :=
|
||||
iff.intro eq_zero_of_abs_eq_zero (assume H, ap abs H ⬝ !abs_zero)
|
||||
|
||||
definition abs_pos_of_pos (H : a > 0) : abs a > 0 :=
|
||||
by rewrite (abs_of_pos H); exact H
|
||||
|
||||
definition abs_pos_of_neg (H : a < 0) : abs a > 0 :=
|
||||
!abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H)
|
||||
|
||||
definition abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 :=
|
||||
sum.rec_on (lt_or_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos
|
||||
|
||||
definition abs_sub (a b : A) : abs (a - b) = abs (b - a) :=
|
||||
by rewrite [-neg_sub, abs_neg]
|
||||
|
||||
definition abs.by_cases {P : A → Type} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1)
|
||||
(assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2)
|
||||
|
||||
definition abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b :=
|
||||
abs.by_cases H1 H2
|
||||
|
||||
definition abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b :=
|
||||
abs.by_cases H1 H2
|
||||
|
||||
-- the triangle inequality
|
||||
section
|
||||
private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b :=
|
||||
decidable.by_cases
|
||||
(assume H3 : b ≥ 0,
|
||||
calc
|
||||
abs (a + b) ≤ abs (a + b) : le.refl
|
||||
... = a + b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a + b : by rewrite (abs_of_nonneg H2)
|
||||
... = abs a + abs b : by rewrite (abs_of_nonneg H3))
|
||||
(assume H3 : ¬ b ≥ 0,
|
||||
assert H4 : b ≤ 0, from le_of_lt (lt_of_not_le H3),
|
||||
calc
|
||||
abs (a + b) = a + b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a + b : by rewrite (abs_of_nonneg H2)
|
||||
... ≤ abs a + 0 : add_le_add_left H4
|
||||
... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4)
|
||||
... = abs a + abs b : by rewrite (abs_of_nonpos H4))
|
||||
|
||||
private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b :=
|
||||
sum.rec_on (le.total b 0)
|
||||
(assume H2 : b ≤ 0,
|
||||
have H3 : ¬ a < 0, from
|
||||
assume H4 : a < 0,
|
||||
have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2,
|
||||
not_lt_of_le H1 H5,
|
||||
aux1 H1 (le_of_not_lt H3))
|
||||
(assume H2 : 0 ≤ b,
|
||||
begin
|
||||
have H3 : abs (b + a) ≤ abs b + abs a,
|
||||
begin
|
||||
rewrite add.comm at H1,
|
||||
exact aux1 H1 H2
|
||||
end,
|
||||
rewrite [add.comm, {abs a + _}add.comm],
|
||||
exact H3
|
||||
end)
|
||||
|
||||
definition abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b :=
|
||||
sum.rec_on (le.total 0 (a + b))
|
||||
(assume H2 : 0 ≤ a + b, aux2 H2)
|
||||
(assume H2 : a + b ≤ 0,
|
||||
assert H3 : -a + -b = -(a + b), by rewrite neg_add,
|
||||
assert H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2,
|
||||
have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end,
|
||||
calc
|
||||
abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add]
|
||||
... ≤ abs (-a) + abs (-b) : aux2 H5
|
||||
... = abs a + abs b : by rewrite *abs_neg)
|
||||
end
|
||||
|
||||
definition abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) :=
|
||||
have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from
|
||||
calc
|
||||
abs a - abs b + abs b = abs a : by rewrite sub_add_cancel
|
||||
... = abs (a - b + b) : by rewrite sub_add_cancel
|
||||
... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs,
|
||||
algebra.le_of_add_le_add_right H1
|
||||
end
|
||||
|
||||
end algebra
|
591
hott/algebra/ordered_ring.hlean
Normal file
591
hott/algebra/ordered_ring.hlean
Normal file
|
@ -0,0 +1,591 @@
|
|||
/-
|
||||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.ordered_ring
|
||||
Authors: Jeremy Avigad
|
||||
|
||||
Here an "ordered_ring" is partially ordered ring, which is ordered with respect to both a weak
|
||||
order and an associated strict order. Our numeric structures (int, rat, and real) will be instances
|
||||
of "linear_ordered_comm_ring". This development is modeled after Isabelle's library.
|
||||
|
||||
Ported from the standard library
|
||||
-/
|
||||
|
||||
import algebra.ordered_group algebra.ring
|
||||
open core
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
definition absurd_a_lt_a {B : Type} {a : A} [s : strict_order A] (H : a < a) : B :=
|
||||
absurd H (lt.irrefl a)
|
||||
|
||||
structure ordered_semiring [class] (A : Type)
|
||||
extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance
|
||||
semiring A, ordered_cancel_comm_monoid A, zero_ne_one_class A :=
|
||||
(mul_le_mul_of_nonneg_left: Πa b c, le a b → le zero c → le (mul c a) (mul c b))
|
||||
(mul_le_mul_of_nonneg_right: Πa b c, le a b → le zero c → le (mul a c) (mul b c))
|
||||
(mul_lt_mul_of_pos_left: Πa b c, lt a b → lt zero c → lt (mul c a) (mul c b))
|
||||
(mul_lt_mul_of_pos_right: Πa b c, lt a b → lt zero c → lt (mul a c) (mul b c))
|
||||
|
||||
section
|
||||
variable [s : ordered_semiring A]
|
||||
variables (a b c d e : A)
|
||||
include s
|
||||
|
||||
definition mul_le_mul_of_nonneg_left {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
|
||||
c * a ≤ c * b := !ordered_semiring.mul_le_mul_of_nonneg_left Hab Hc
|
||||
|
||||
definition mul_le_mul_of_nonneg_right {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
|
||||
a * c ≤ b * c := !ordered_semiring.mul_le_mul_of_nonneg_right Hab Hc
|
||||
|
||||
-- TODO: there are four variations, depending on which variables we assume to be nonneg
|
||||
definition mul_le_mul {a b c d : A} (Hac : a ≤ c) (Hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) :
|
||||
a * b ≤ c * d :=
|
||||
calc
|
||||
a * b ≤ c * b : mul_le_mul_of_nonneg_right Hac nn_b
|
||||
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
||||
|
||||
definition mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 :=
|
||||
begin
|
||||
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 :=
|
||||
begin
|
||||
have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha,
|
||||
rewrite mul_zero at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 :=
|
||||
begin
|
||||
have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) :
|
||||
c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc
|
||||
|
||||
definition mul_lt_mul_of_pos_right {a b c : A} (Hab : a < b) (Hc : 0 < c) :
|
||||
a * c < b * c := !ordered_semiring.mul_lt_mul_of_pos_right Hab Hc
|
||||
|
||||
-- TODO: once again, there are variations
|
||||
definition mul_lt_mul {a b c d : A} (Hac : a < c) (Hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) :
|
||||
a * b < c * d :=
|
||||
calc
|
||||
a * b < c * b : mul_lt_mul_of_pos_right Hac pos_b
|
||||
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
||||
|
||||
definition mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 :=
|
||||
begin
|
||||
have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 :=
|
||||
begin
|
||||
have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha,
|
||||
rewrite mul_zero at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 :=
|
||||
begin
|
||||
have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
structure linear_ordered_semiring [class] (A : Type)
|
||||
extends ordered_semiring A, linear_strong_order_pair A
|
||||
|
||||
section
|
||||
variable [s : linear_ordered_semiring A]
|
||||
variables {a b c : A}
|
||||
include s
|
||||
|
||||
definition lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
|
||||
lt_of_not_le
|
||||
(assume H1 : b ≤ a,
|
||||
have H2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left H1 Hc,
|
||||
not_lt_of_le H2 H)
|
||||
|
||||
definition lt_of_mul_lt_mul_right (H : a * c < b * c) (Hc : c ≥ 0) : a < b :=
|
||||
lt_of_not_le
|
||||
(assume H1 : b ≤ a,
|
||||
have H2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right H1 Hc,
|
||||
not_lt_of_le H2 H)
|
||||
|
||||
definition le_of_mul_le_mul_left (H : c * a ≤ c * b) (Hc : c > 0) : a ≤ b :=
|
||||
le_of_not_lt
|
||||
(assume H1 : b < a,
|
||||
have H2 : c * b < c * a, from mul_lt_mul_of_pos_left H1 Hc,
|
||||
not_le_of_lt H2 H)
|
||||
|
||||
definition le_of_mul_le_mul_right (H : a * c ≤ b * c) (Hc : c > 0) : a ≤ b :=
|
||||
le_of_not_lt
|
||||
(assume H1 : b < a,
|
||||
have H2 : b * c < a * c, from mul_lt_mul_of_pos_right H1 Hc,
|
||||
not_le_of_lt H2 H)
|
||||
|
||||
definition pos_of_mul_pos_left (H : 0 < a * b) (H1 : 0 ≤ a) : 0 < b :=
|
||||
lt_of_not_le
|
||||
(assume H2 : b ≤ 0,
|
||||
have H3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos H1 H2,
|
||||
not_lt_of_le H3 H)
|
||||
|
||||
definition pos_of_mul_pos_right (H : 0 < a * b) (H1 : 0 ≤ b) : 0 < a :=
|
||||
lt_of_not_le
|
||||
(assume H2 : a ≤ 0,
|
||||
have H3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg H2 H1,
|
||||
not_lt_of_le H3 H)
|
||||
end
|
||||
|
||||
structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A, zero_ne_one_class A :=
|
||||
(mul_nonneg : Πa b, le zero a → le zero b → le zero (mul a b))
|
||||
(mul_pos : Πa b, lt zero a → lt zero b → lt zero (mul a b))
|
||||
|
||||
definition ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A}
|
||||
(Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b :=
|
||||
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
||||
assert H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1,
|
||||
begin
|
||||
rewrite mul_sub_left_distrib at H2,
|
||||
exact (iff.mp !sub_nonneg_iff_le H2)
|
||||
end
|
||||
|
||||
definition ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A}
|
||||
(Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c :=
|
||||
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
||||
assert H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc,
|
||||
begin
|
||||
rewrite mul_sub_right_distrib at H2,
|
||||
exact (iff.mp !sub_nonneg_iff_le H2)
|
||||
end
|
||||
|
||||
definition ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A}
|
||||
(Hab : a < b) (Hc : 0 < c) : c * a < c * b :=
|
||||
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
||||
assert H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1,
|
||||
begin
|
||||
rewrite mul_sub_left_distrib at H2,
|
||||
exact (iff.mp !sub_pos_iff_lt H2)
|
||||
end
|
||||
|
||||
definition ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A}
|
||||
(Hab : a < b) (Hc : 0 < c) : a * c < b * c :=
|
||||
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
||||
assert H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc,
|
||||
begin
|
||||
rewrite mul_sub_right_distrib at H2,
|
||||
exact (iff.mp !sub_pos_iff_lt H2)
|
||||
end
|
||||
|
||||
definition ordered_ring.to_ordered_semiring [instance] [coercion] [reducible] [s : ordered_ring A] :
|
||||
ordered_semiring A :=
|
||||
⦃ ordered_semiring, s,
|
||||
mul_zero := mul_zero,
|
||||
zero_mul := zero_mul,
|
||||
add_left_cancel := @add.left_cancel A s,
|
||||
add_right_cancel := @add.right_cancel A s,
|
||||
le_of_add_le_add_left := @le_of_add_le_add_left A s,
|
||||
mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left A s,
|
||||
mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right A s,
|
||||
mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left A s,
|
||||
mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right A s ⦄
|
||||
|
||||
section
|
||||
variable [s : ordered_ring A]
|
||||
variables {a b c : A}
|
||||
include s
|
||||
|
||||
definition mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b :=
|
||||
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
||||
assert H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc',
|
||||
have H2 : -(c * b) ≤ -(c * a),
|
||||
begin
|
||||
rewrite [-*neg_mul_eq_neg_mul at H1],
|
||||
exact H1
|
||||
end,
|
||||
iff.mp !neg_le_neg_iff_le H2
|
||||
|
||||
definition mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c :=
|
||||
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
||||
assert H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc',
|
||||
have H2 : -(b * c) ≤ -(a * c),
|
||||
begin
|
||||
rewrite [-*neg_mul_eq_mul_neg at H1],
|
||||
exact H1
|
||||
end,
|
||||
iff.mp !neg_le_neg_iff_le H2
|
||||
|
||||
definition mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b :=
|
||||
begin
|
||||
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonpos_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b :=
|
||||
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
||||
assert H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc',
|
||||
have H2 : -(c * b) < -(c * a),
|
||||
begin
|
||||
rewrite [-*neg_mul_eq_neg_mul at H1],
|
||||
exact H1
|
||||
end,
|
||||
iff.mp !neg_lt_neg_iff_lt H2
|
||||
|
||||
definition mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c :=
|
||||
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
||||
assert H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc',
|
||||
have H2 : -(b * c) < -(a * c),
|
||||
begin
|
||||
rewrite [-*neg_mul_eq_mul_neg at H1],
|
||||
exact H1
|
||||
end,
|
||||
iff.mp !neg_lt_neg_iff_lt H2
|
||||
|
||||
definition mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b :=
|
||||
begin
|
||||
have H : 0 * b < a * b, from mul_lt_mul_of_neg_right Ha Hb,
|
||||
rewrite zero_mul at H,
|
||||
exact H
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
|
||||
-- class instance
|
||||
structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A
|
||||
|
||||
-- print fields linear_ordered_semiring
|
||||
|
||||
definition linear_ordered_ring.to_linear_ordered_semiring [instance] [coercion] [reducible]
|
||||
[s : linear_ordered_ring A] :
|
||||
linear_ordered_semiring A :=
|
||||
⦃ linear_ordered_semiring, s,
|
||||
mul_zero := mul_zero,
|
||||
zero_mul := zero_mul,
|
||||
add_left_cancel := @add.left_cancel A s,
|
||||
add_right_cancel := @add.right_cancel A s,
|
||||
le_of_add_le_add_left := @le_of_add_le_add_left A s,
|
||||
mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left A s,
|
||||
mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right A s,
|
||||
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left A s,
|
||||
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right A s,
|
||||
le_total := linear_ordered_ring.le_total ⦄
|
||||
|
||||
structure linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_ring A, comm_monoid A
|
||||
|
||||
definition linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_ordered_comm_ring A]
|
||||
{a b : A} (H : a * b = 0) : a = 0 ⊎ b = 0 :=
|
||||
lt.by_cases
|
||||
(assume Ha : 0 < a,
|
||||
lt.by_cases
|
||||
(assume Hb : 0 < b,
|
||||
begin
|
||||
have H1 : 0 < a * b, from mul_pos Ha Hb,
|
||||
rewrite H at H1,
|
||||
apply absurd_a_lt_a H1
|
||||
end)
|
||||
(assume Hb : 0 = b, sum.inr (Hb⁻¹))
|
||||
(assume Hb : 0 > b,
|
||||
begin
|
||||
have H1 : 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb,
|
||||
rewrite H at H1,
|
||||
apply absurd_a_lt_a H1
|
||||
end))
|
||||
(assume Ha : 0 = a, sum.inl (Ha⁻¹))
|
||||
(assume Ha : 0 > a,
|
||||
lt.by_cases
|
||||
(assume Hb : 0 < b,
|
||||
begin
|
||||
have H1 : 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb,
|
||||
rewrite H at H1,
|
||||
apply absurd_a_lt_a H1
|
||||
end)
|
||||
(assume Hb : 0 = b, sum.inr (Hb⁻¹))
|
||||
(assume Hb : 0 > b,
|
||||
begin
|
||||
have H1 : 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb,
|
||||
rewrite H at H1,
|
||||
apply absurd_a_lt_a H1
|
||||
end))
|
||||
|
||||
-- Linearity implies no zero divisors. Doesn't need commutativity.
|
||||
definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion] [reducible]
|
||||
[s: linear_ordered_comm_ring A] : integral_domain A :=
|
||||
⦃ integral_domain, s,
|
||||
eq_zero_or_eq_zero_of_mul_eq_zero :=
|
||||
@linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero A s ⦄
|
||||
|
||||
section
|
||||
variable [s : linear_ordered_ring A]
|
||||
variables (a b c : A)
|
||||
include s
|
||||
|
||||
definition mul_self_nonneg : a * a ≥ 0 :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H : a ≥ 0, mul_nonneg H H)
|
||||
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
|
||||
|
||||
definition zero_le_one : 0 ≤ 1 := one_mul 1 ▸ mul_self_nonneg (1 : A)
|
||||
definition zero_lt_one : 0 < 1 := lt_of_le_of_ne zero_le_one zero_ne_one
|
||||
|
||||
definition pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
|
||||
(a > 0 × b > 0) ⊎ (a < 0 × b < 0) :=
|
||||
lt.by_cases
|
||||
(assume Ha : 0 < a,
|
||||
lt.by_cases
|
||||
(assume Hb : 0 < b, sum.inl (pair Ha Hb))
|
||||
(assume Hb : 0 = b,
|
||||
begin
|
||||
rewrite [-Hb at Hab, mul_zero at Hab],
|
||||
apply absurd_a_lt_a Hab
|
||||
end)
|
||||
(assume Hb : b < 0,
|
||||
absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb))))
|
||||
(assume Ha : 0 = a,
|
||||
begin
|
||||
rewrite [-Ha at Hab, zero_mul at Hab],
|
||||
apply absurd_a_lt_a Hab
|
||||
end)
|
||||
(assume Ha : a < 0,
|
||||
lt.by_cases
|
||||
(assume Hb : 0 < b,
|
||||
absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb)))
|
||||
(assume Hb : 0 = b,
|
||||
begin
|
||||
rewrite [-Hb at Hab, mul_zero at Hab],
|
||||
apply absurd_a_lt_a Hab
|
||||
end)
|
||||
(assume Hb : b < 0, sum.inr (pair Ha Hb)))
|
||||
|
||||
definition gt_of_mul_lt_mul_neg_left {a b c : A} (H : c * a < c * b) (Hc : c ≤ 0) : a > b :=
|
||||
have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc,
|
||||
have H2 : -(c * b) < -(c * a), from iff.mp' (neg_lt_neg_iff_lt _ _) H,
|
||||
have H3 : (-c) * b < (-c) * a, from calc
|
||||
(-c) * b = - (c * b) : neg_mul_eq_neg_mul
|
||||
... < -(c * a) : H2
|
||||
... = (-c) * a : neg_mul_eq_neg_mul,
|
||||
lt_of_mul_lt_mul_left H3 nhc
|
||||
|
||||
definition zero_gt_neg_one : -1 < (0 : A) :=
|
||||
neg_zero ▸ (neg_lt_neg zero_lt_one)
|
||||
|
||||
end
|
||||
|
||||
/- TODO: Isabelle's library has all kinds of cancelation rules for the simplifier.
|
||||
Search on mult_le_cancel_right1 in Rings.thy. -/
|
||||
|
||||
structure decidable_linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_comm_ring A,
|
||||
decidable_linear_ordered_comm_group A
|
||||
|
||||
section
|
||||
variable [s : decidable_linear_ordered_comm_ring A]
|
||||
variables {a b c : A}
|
||||
include s
|
||||
|
||||
definition sign (a : A) : A := lt.cases a 0 (-1) 0 1
|
||||
|
||||
definition sign_of_neg (H : a < 0) : sign a = -1 := lt.cases_of_lt H
|
||||
|
||||
definition sign_zero : sign 0 = 0 := lt.cases_of_eq rfl
|
||||
|
||||
definition sign_of_pos (H : a > 0) : sign a = 1 := lt.cases_of_gt H
|
||||
|
||||
definition sign_one : sign 1 = 1 := sign_of_pos zero_lt_one
|
||||
|
||||
definition sign_neg_one : sign (-1) = -1 := sign_of_neg (neg_neg_of_pos zero_lt_one)
|
||||
|
||||
definition sign_sign (a : A) : sign (sign a) = sign a :=
|
||||
lt.by_cases
|
||||
(assume H : a > 0,
|
||||
calc
|
||||
sign (sign a) = sign 1 : by rewrite (sign_of_pos H)
|
||||
... = 1 : by rewrite sign_one
|
||||
... = sign a : by rewrite (sign_of_pos H))
|
||||
(assume H : 0 = a,
|
||||
calc
|
||||
sign (sign a) = sign (sign 0) : by rewrite H
|
||||
... = sign 0 : by rewrite sign_zero at {1}
|
||||
... = sign a : by rewrite -H)
|
||||
(assume H : a < 0,
|
||||
calc
|
||||
sign (sign a) = sign (-1) : by rewrite (sign_of_neg H)
|
||||
... = -1 : by rewrite sign_neg_one
|
||||
... = sign a : by rewrite (sign_of_neg H))
|
||||
|
||||
definition pos_of_sign_eq_one (H : sign a = 1) : a > 0 :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a, H1)
|
||||
(assume H1 : 0 = a,
|
||||
begin
|
||||
rewrite [-H1 at H, sign_zero at H],
|
||||
apply absurd H zero_ne_one
|
||||
end)
|
||||
(assume H1 : 0 > a,
|
||||
have H2 : -1 = 1, from (sign_of_neg H1)⁻¹ ⬝ H,
|
||||
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
||||
|
||||
definition eq_zero_of_sign_eq_zero (H : sign a = 0) : a = 0 :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a,
|
||||
absurd (H⁻¹ ⬝ sign_of_pos H1) zero_ne_one)
|
||||
(assume H1 : 0 = a, H1⁻¹)
|
||||
(assume H1 : 0 > a,
|
||||
have H2 : 0 = -1, from H⁻¹ ⬝ sign_of_neg H1,
|
||||
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
|
||||
absurd (H3⁻¹) zero_ne_one)
|
||||
|
||||
definition neg_of_sign_eq_neg_one (H : sign a = -1) : a < 0 :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a,
|
||||
have H2 : -1 = 1, from H⁻¹ ⬝ (sign_of_pos H1),
|
||||
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
||||
(assume H1 : 0 = a,
|
||||
have H2 : 0 = -1,
|
||||
begin
|
||||
rewrite [-H1 at H, sign_zero at H],
|
||||
exact H
|
||||
end,
|
||||
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
|
||||
absurd (H3⁻¹) zero_ne_one)
|
||||
(assume H1 : 0 > a, H1)
|
||||
|
||||
definition sign_neg (a : A) : sign (-a) = -(sign a) :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a,
|
||||
calc
|
||||
sign (-a) = -1 : sign_of_neg (neg_neg_of_pos H1)
|
||||
... = -(sign a) : by rewrite (sign_of_pos H1))
|
||||
(assume H1 : 0 = a,
|
||||
calc
|
||||
sign (-a) = sign (-0) : by rewrite H1
|
||||
... = sign 0 : by rewrite neg_zero
|
||||
... = 0 : by rewrite sign_zero
|
||||
... = -0 : by rewrite neg_zero
|
||||
... = -(sign 0) : by rewrite sign_zero
|
||||
... = -(sign a) : by rewrite -H1)
|
||||
(assume H1 : 0 > a,
|
||||
calc
|
||||
sign (-a) = 1 : sign_of_pos (neg_pos_of_neg H1)
|
||||
... = -(-1) : by rewrite neg_neg
|
||||
... = -(sign a) : sign_of_neg H1)
|
||||
|
||||
definition sign_mul (a b : A) : sign (a * b) = sign a * sign b :=
|
||||
lt.by_cases
|
||||
(assume z_lt_a : 0 < a,
|
||||
lt.by_cases
|
||||
(assume z_lt_b : 0 < b,
|
||||
by rewrite [sign_of_pos z_lt_a, sign_of_pos z_lt_b,
|
||||
sign_of_pos (mul_pos z_lt_a z_lt_b), one_mul])
|
||||
(assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero])
|
||||
(assume z_gt_b : 0 > b,
|
||||
by rewrite [sign_of_pos z_lt_a, sign_of_neg z_gt_b,
|
||||
sign_of_neg (mul_neg_of_pos_of_neg z_lt_a z_gt_b), one_mul]))
|
||||
(assume z_eq_a : 0 = a, by rewrite [-z_eq_a, zero_mul, *sign_zero, zero_mul])
|
||||
(assume z_gt_a : 0 > a,
|
||||
lt.by_cases
|
||||
(assume z_lt_b : 0 < b,
|
||||
by rewrite [sign_of_neg z_gt_a, sign_of_pos z_lt_b,
|
||||
sign_of_neg (mul_neg_of_neg_of_pos z_gt_a z_lt_b), mul_one])
|
||||
(assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero])
|
||||
(assume z_gt_b : 0 > b,
|
||||
by rewrite [sign_of_neg z_gt_a, sign_of_neg z_gt_b,
|
||||
sign_of_pos (mul_pos_of_neg_of_neg z_gt_a z_gt_b),
|
||||
neg_mul_neg, one_mul]))
|
||||
|
||||
definition abs_eq_sign_mul (a : A) : abs a = sign a * a :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a,
|
||||
calc
|
||||
abs a = a : abs_of_pos H1
|
||||
... = 1 * a : by rewrite one_mul
|
||||
... = sign a * a : by rewrite (sign_of_pos H1))
|
||||
(assume H1 : 0 = a,
|
||||
calc
|
||||
abs a = abs 0 : by rewrite H1
|
||||
... = 0 : by rewrite abs_zero
|
||||
... = 0 * a : by rewrite zero_mul
|
||||
... = sign 0 * a : by rewrite sign_zero
|
||||
... = sign a * a : by rewrite H1)
|
||||
(assume H1 : a < 0,
|
||||
calc
|
||||
abs a = -a : abs_of_neg H1
|
||||
... = -1 * a : by rewrite neg_eq_neg_one_mul
|
||||
... = sign a * a : by rewrite (sign_of_neg H1))
|
||||
|
||||
definition eq_sign_mul_abs (a : A) : a = sign a * abs a :=
|
||||
lt.by_cases
|
||||
(assume H1 : 0 < a,
|
||||
calc
|
||||
a = abs a : abs_of_pos H1
|
||||
... = 1 * abs a : by rewrite one_mul
|
||||
... = sign a * abs a : by rewrite (sign_of_pos H1))
|
||||
(assume H1 : 0 = a,
|
||||
calc
|
||||
a = 0 : H1⁻¹
|
||||
... = 0 * abs a : by rewrite zero_mul
|
||||
... = sign 0 * abs a : by rewrite sign_zero
|
||||
... = sign a * abs a : by rewrite H1)
|
||||
(assume H1 : a < 0,
|
||||
calc
|
||||
a = -(-a) : by rewrite neg_neg
|
||||
... = -abs a : by rewrite (abs_of_neg H1)
|
||||
... = -1 * abs a : by rewrite neg_eq_neg_one_mul
|
||||
... = sign a * abs a : by rewrite (sign_of_neg H1))
|
||||
|
||||
definition abs_dvd_iff_dvd (a b : A) : abs a ∣ b ↔ a ∣ b :=
|
||||
abs.by_cases !iff.refl !neg_dvd_iff_dvd
|
||||
|
||||
definition dvd_abs_iff (a b : A) : a ∣ abs b ↔ a ∣ b :=
|
||||
abs.by_cases !iff.refl !dvd_neg_iff_dvd
|
||||
|
||||
definition abs_mul (a b : A) : abs (a * b) = abs a * abs b :=
|
||||
sum.rec_on (le.total 0 a)
|
||||
(assume H1 : 0 ≤ a,
|
||||
sum.rec_on (le.total 0 b)
|
||||
(assume H2 : 0 ≤ b,
|
||||
calc
|
||||
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg H1 H2)
|
||||
... = abs a * b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
|
||||
(assume H2 : b ≤ 0,
|
||||
calc
|
||||
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonneg_of_nonpos H1 H2)
|
||||
... = a * -b : by rewrite neg_mul_eq_mul_neg
|
||||
... = abs a * -b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
|
||||
(assume H1 : a ≤ 0,
|
||||
sum.rec_on (le.total 0 b)
|
||||
(assume H2 : 0 ≤ b,
|
||||
calc
|
||||
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonpos_of_nonneg H1 H2)
|
||||
... = -a * b : by rewrite neg_mul_eq_neg_mul
|
||||
... = abs a * b : by rewrite (abs_of_nonpos H1)
|
||||
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
|
||||
(assume H2 : b ≤ 0,
|
||||
calc
|
||||
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg_of_nonpos_of_nonpos H1 H2)
|
||||
... = -a * -b : by rewrite neg_mul_neg
|
||||
... = abs a * -b : by rewrite (abs_of_nonpos H1)
|
||||
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
|
||||
|
||||
definition abs_mul_self (a : A) : abs a * abs a = a * a :=
|
||||
abs.by_cases rfl !neg_mul_neg
|
||||
end
|
||||
|
||||
/- TODO: Multiplication and one, starting with mult_right_le_one_le. -/
|
||||
|
||||
end algebra
|
363
hott/algebra/ring.hlean
Normal file
363
hott/algebra/ring.hlean
Normal file
|
@ -0,0 +1,363 @@
|
|||
/-
|
||||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.ring
|
||||
Authors: Jeremy Avigad, Leonardo de Moura
|
||||
|
||||
Structures with multiplicative and additive components, including semirings, rings, and fields.
|
||||
The development is modeled after Isabelle's library.
|
||||
Ported from the standard library
|
||||
-/
|
||||
|
||||
import algebra.group
|
||||
|
||||
open core
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
/- auxiliary classes -/
|
||||
|
||||
structure distrib [class] (A : Type) extends has_mul A, has_add A :=
|
||||
(left_distrib : Πa b c, mul a (add b c) = add (mul a b) (mul a c))
|
||||
(right_distrib : Πa b c, mul (add a b) c = add (mul a c) (mul b c))
|
||||
|
||||
definition left_distrib [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c :=
|
||||
!distrib.left_distrib
|
||||
|
||||
definition right_distrib [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c :=
|
||||
!distrib.right_distrib
|
||||
|
||||
structure mul_zero_class [class] (A : Type) extends has_mul A, has_zero A :=
|
||||
(zero_mul : Πa, mul zero a = zero)
|
||||
(mul_zero : Πa, mul a zero = zero)
|
||||
|
||||
definition zero_mul [s : mul_zero_class A] (a : A) : 0 * a = 0 := !mul_zero_class.zero_mul
|
||||
definition mul_zero [s : mul_zero_class A] (a : A) : a * 0 = 0 := !mul_zero_class.mul_zero
|
||||
|
||||
structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A :=
|
||||
(zero_ne_one : zero ≠ one)
|
||||
|
||||
definition zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zero_ne_one A s
|
||||
|
||||
/- semiring -/
|
||||
|
||||
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A,
|
||||
mul_zero_class A
|
||||
|
||||
section semiring
|
||||
variables [s : semiring A] (a b c : A)
|
||||
include s
|
||||
|
||||
definition ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
|
||||
assume H1 : a = 0,
|
||||
have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul b,
|
||||
H H2
|
||||
|
||||
definition ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
|
||||
assume H1 : b = 0,
|
||||
have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero a,
|
||||
H H2
|
||||
end semiring
|
||||
|
||||
/- comm semiring -/
|
||||
|
||||
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
|
||||
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying
|
||||
-- c ≠ 0 → c * a = c * b → a = b.
|
||||
|
||||
section comm_semiring
|
||||
variables [s : comm_semiring A] (a b c : A)
|
||||
include s
|
||||
|
||||
definition dvd (a b : A) : Type := Σc, b = a * c
|
||||
notation a ∣ b := dvd a b
|
||||
|
||||
definition dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
||||
sigma.mk _ H⁻¹
|
||||
|
||||
definition dvd.intro_left {a b c : A} (H : c * a = b) : a ∣ b :=
|
||||
dvd.intro (!mul.comm ▸ H)
|
||||
|
||||
definition exists_eq_mul_right_of_dvd {a b : A} (H : a ∣ b) : Σc, b = a * c := H
|
||||
|
||||
definition dvd.elim {P : Type} {a b : A} (H₁ : a ∣ b) (H₂ : Πc, b = a * c → P) : P :=
|
||||
sigma.rec_on H₁ H₂
|
||||
|
||||
definition exists_eq_mul_left_of_dvd {a b : A} (H : a ∣ b) : Σc, b = c * a :=
|
||||
dvd.elim H (take c, assume H1 : b = a * c, sigma.mk c (H1 ⬝ !mul.comm))
|
||||
|
||||
definition dvd.elim_left {P : Type} {a b : A} (H₁ : a ∣ b) (H₂ : Πc, b = c * a → P) : P :=
|
||||
sigma.rec_on (exists_eq_mul_left_of_dvd H₁) (take c, assume H₃ : b = c * a, H₂ c H₃)
|
||||
|
||||
definition dvd.refl : a ∣ a := dvd.intro !mul_one
|
||||
|
||||
definition dvd.trans {a b c : A} (H₁ : a ∣ b) (H₂ : b ∣ c) : a ∣ c :=
|
||||
dvd.elim H₁
|
||||
(take d, assume H₃ : b = a * d,
|
||||
dvd.elim H₂
|
||||
(take e, assume H₄ : c = b * e,
|
||||
dvd.intro
|
||||
(show a * (d * e) = c, by rewrite [-mul.assoc, -H₃, H₄])))
|
||||
|
||||
definition eq_zero_of_zero_dvd {a : A} (H : 0 ∣ a) : a = 0 :=
|
||||
dvd.elim H (take c, assume H' : a = 0 * c, H' ⬝ !zero_mul)
|
||||
|
||||
definition dvd_zero : a ∣ 0 := dvd.intro !mul_zero
|
||||
|
||||
definition one_dvd : 1 ∣ a := dvd.intro !one_mul
|
||||
|
||||
definition dvd_mul_right : a ∣ a * b := dvd.intro rfl
|
||||
|
||||
definition dvd_mul_left : a ∣ b * a := mul.comm a b ▸ dvd_mul_right a b
|
||||
|
||||
definition dvd_mul_of_dvd_left {a b : A} (H : a ∣ b) (c : A) : a ∣ b * c :=
|
||||
dvd.elim H
|
||||
(take d,
|
||||
assume H₁ : b = a * d,
|
||||
dvd.intro
|
||||
(show a * (d * c) = b * c, from by rewrite [-mul.assoc, H₁]))
|
||||
|
||||
definition dvd_mul_of_dvd_right {a b : A} (H : a ∣ b) (c : A) : a ∣ c * b :=
|
||||
!mul.comm ▸ (dvd_mul_of_dvd_left H _)
|
||||
|
||||
definition mul_dvd_mul {a b c d : A} (dvd_ab : (a ∣ b)) (dvd_cd : c ∣ d) : a * c ∣ b * d :=
|
||||
dvd.elim dvd_ab
|
||||
(take e, assume Haeb : b = a * e,
|
||||
dvd.elim dvd_cd
|
||||
(take f, assume Hcfd : d = c * f,
|
||||
dvd.intro
|
||||
(show a * c * (e * f) = b * d,
|
||||
by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc, Haeb, Hcfd])))
|
||||
|
||||
definition dvd_of_mul_right_dvd {a b c : A} (H : a * b ∣ c) : a ∣ c :=
|
||||
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
||||
|
||||
definition dvd_of_mul_left_dvd {a b c : A} (H : a * b ∣ c) : b ∣ c :=
|
||||
dvd_of_mul_right_dvd (mul.comm a b ▸ H)
|
||||
|
||||
definition dvd_add {a b c : A} (Hab : a ∣ b) (Hac : a ∣ c) : a ∣ b + c :=
|
||||
dvd.elim Hab
|
||||
(take d, assume Hadb : b = a * d,
|
||||
dvd.elim Hac
|
||||
(take e, assume Haec : c = a * e,
|
||||
dvd.intro (show a * (d + e) = b + c,
|
||||
by rewrite [left_distrib, -Hadb, -Haec])))
|
||||
end comm_semiring
|
||||
|
||||
/- ring -/
|
||||
|
||||
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A
|
||||
|
||||
definition ring.mul_zero [s : ring A] (a : A) : a * 0 = 0 :=
|
||||
have H : a * 0 + 0 = a * 0 + a * 0, from calc
|
||||
a * 0 + 0 = a * 0 : by rewrite add_zero
|
||||
... = a * (0 + 0) : by rewrite add_zero
|
||||
... = a * 0 + a * 0 : by rewrite {a*_}ring.left_distrib,
|
||||
show a * 0 = 0, from (add.left_cancel H)⁻¹
|
||||
|
||||
definition ring.zero_mul [s : ring A] (a : A) : 0 * a = 0 :=
|
||||
have H : 0 * a + 0 = 0 * a + 0 * a, from calc
|
||||
0 * a + 0 = 0 * a : by rewrite add_zero
|
||||
... = (0 + 0) * a : by rewrite add_zero
|
||||
... = 0 * a + 0 * a : by rewrite {_*a}ring.right_distrib,
|
||||
show 0 * a = 0, from (add.left_cancel H)⁻¹
|
||||
|
||||
definition ring.to_semiring [instance] [coercion] [reducible] [s : ring A] : semiring A :=
|
||||
⦃ semiring, s,
|
||||
mul_zero := ring.mul_zero,
|
||||
zero_mul := ring.zero_mul ⦄
|
||||
|
||||
section
|
||||
variables [s : ring A] (a b c d e : A)
|
||||
include s
|
||||
|
||||
definition neg_mul_eq_neg_mul : -(a * b) = -a * b :=
|
||||
neg_eq_of_add_eq_zero
|
||||
begin
|
||||
rewrite [-right_distrib, add.right_inv, zero_mul]
|
||||
end
|
||||
|
||||
definition neg_mul_eq_mul_neg : -(a * b) = a * -b :=
|
||||
neg_eq_of_add_eq_zero
|
||||
begin
|
||||
rewrite [-left_distrib, add.right_inv, mul_zero]
|
||||
end
|
||||
|
||||
definition neg_mul_neg : -a * -b = a * b :=
|
||||
calc
|
||||
-a * -b = -(a * -b) : by rewrite -neg_mul_eq_neg_mul
|
||||
... = - -(a * b) : by rewrite -neg_mul_eq_mul_neg
|
||||
... = a * b : by rewrite neg_neg
|
||||
|
||||
definition neg_mul_comm : -a * b = a * -b := !neg_mul_eq_neg_mul⁻¹ ⬝ !neg_mul_eq_mul_neg
|
||||
|
||||
definition neg_eq_neg_one_mul : -a = -1 * a :=
|
||||
calc
|
||||
-a = -(1 * a) : by rewrite one_mul
|
||||
... = -1 * a : by rewrite neg_mul_eq_neg_mul
|
||||
|
||||
definition mul_sub_left_distrib : a * (b - c) = a * b - a * c :=
|
||||
calc
|
||||
a * (b - c) = a * b + a * -c : left_distrib
|
||||
... = a * b + - (a * c) : by rewrite -neg_mul_eq_mul_neg
|
||||
... = a * b - a * c : rfl
|
||||
|
||||
definition mul_sub_right_distrib : (a - b) * c = a * c - b * c :=
|
||||
calc
|
||||
(a - b) * c = a * c + -b * c : right_distrib
|
||||
... = a * c + - (b * c) : by rewrite neg_mul_eq_neg_mul
|
||||
... = a * c - b * c : rfl
|
||||
|
||||
-- TODO: can calc mode be improved to make this easier?
|
||||
-- TODO: there is also the other direction. It will be easier when we
|
||||
-- have the simplifier.
|
||||
|
||||
definition mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d :=
|
||||
calc
|
||||
a * e + c = b * e + d ↔ a * e + c = d + b * e : by rewrite {b*e+_}add.comm
|
||||
... ↔ a * e + c - b * e = d : iff.symm !sub_eq_iff_eq_add
|
||||
... ↔ a * e - b * e + c = d : by rewrite sub_add_eq_add_sub
|
||||
... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib
|
||||
|
||||
definition mul_neg_one_eq_neg : a * (-1) = -a :=
|
||||
have H : a + a * -1 = 0, from calc
|
||||
a + a * -1 = a * 1 + a * -1 : mul_one
|
||||
... = a * (1 + -1) : left_distrib
|
||||
... = a * 0 : add.right_inv
|
||||
... = 0 : mul_zero,
|
||||
inverse (neg_eq_of_add_eq_zero H)
|
||||
|
||||
definition mul_ne_zero_imp_ne_zero {a b} (H : a * b ≠ 0) : a ≠ 0 × b ≠ 0 :=
|
||||
have Ha : a ≠ 0, from
|
||||
(assume Ha1 : a = 0,
|
||||
have H1 : a * b = 0, by rewrite [Ha1, zero_mul],
|
||||
absurd H1 H),
|
||||
have Hb : b ≠ 0, from
|
||||
(assume Hb1 : b = 0,
|
||||
have H1 : a * b = 0, by rewrite [Hb1, mul_zero],
|
||||
absurd H1 H),
|
||||
pair Ha Hb
|
||||
end
|
||||
|
||||
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
|
||||
|
||||
definition comm_ring.to_comm_semiring [instance] [coercion] [reducible] [s : comm_ring A] : comm_semiring A :=
|
||||
⦃ comm_semiring, s,
|
||||
mul_zero := mul_zero,
|
||||
zero_mul := zero_mul ⦄
|
||||
|
||||
section
|
||||
variables [s : comm_ring A] (a b c d e : A)
|
||||
include s
|
||||
|
||||
definition mul_self_sub_mul_self_eq : a * a - b * b = (a + b) * (a - b) :=
|
||||
by rewrite [left_distrib, *right_distrib, add.assoc, -{b*a + _}add.assoc,
|
||||
-*neg_mul_eq_mul_neg, {a*b}mul.comm, add.right_inv, zero_add]
|
||||
|
||||
definition mul_self_sub_one_eq : a * a - 1 = (a + 1) * (a - 1) :=
|
||||
mul_one 1 ▸ mul_self_sub_mul_self_eq a 1
|
||||
|
||||
definition dvd_neg_iff_dvd : (a ∣ -b) ↔ (a ∣ b) :=
|
||||
iff.intro
|
||||
(assume H : (a ∣ -b),
|
||||
dvd.elim H
|
||||
(take c, assume H' : -b = a * c,
|
||||
dvd.intro
|
||||
(show a * -c = b,
|
||||
by rewrite [-neg_mul_eq_mul_neg, -H', neg_neg])))
|
||||
(assume H : (a ∣ b),
|
||||
dvd.elim H
|
||||
(take c, assume H' : b = a * c,
|
||||
dvd.intro
|
||||
(show a * -c = -b,
|
||||
by rewrite [-neg_mul_eq_mul_neg, -H'])))
|
||||
|
||||
definition neg_dvd_iff_dvd : (-a ∣ b) ↔ (a ∣ b) :=
|
||||
iff.intro
|
||||
(assume H : (-a ∣ b),
|
||||
dvd.elim H
|
||||
(take c, assume H' : b = -a * c,
|
||||
dvd.intro
|
||||
(show a * -c = b, by rewrite [-neg_mul_comm, H'])))
|
||||
(assume H : (a ∣ b),
|
||||
dvd.elim H
|
||||
(take c, assume H' : b = a * c,
|
||||
dvd.intro
|
||||
(show -a * -c = b, by rewrite [neg_mul_neg, H'])))
|
||||
|
||||
definition dvd_sub (H₁ : (a ∣ b)) (H₂ : (a ∣ c)) : (a ∣ b - c) :=
|
||||
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
|
||||
end
|
||||
|
||||
/- integral domains -/
|
||||
|
||||
structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A :=
|
||||
(eq_zero_or_eq_zero_of_mul_eq_zero : Πa b, mul a b = zero → a = zero ⊎ b = zero)
|
||||
|
||||
definition eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A}
|
||||
(H : a * b = 0) :
|
||||
a = 0 ⊎ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
|
||||
|
||||
structure integral_domain [class] (A : Type) extends comm_ring A, no_zero_divisors A
|
||||
|
||||
section
|
||||
variables [s : integral_domain A] (a b c d e : A)
|
||||
include s
|
||||
|
||||
definition mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||||
assume H : a * b = 0,
|
||||
sum.rec_on (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
|
||||
|
||||
definition mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
|
||||
have H1 : b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||||
have H2 : (b - c) * a = 0, using H1, by rewrite [mul_sub_right_distrib, H1],
|
||||
have H3 : b - c = 0, from sum_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
||||
iff.elim_right !eq_iff_sub_eq_zero H3
|
||||
|
||||
definition mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
|
||||
have H1 : a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||||
have H2 : a * (b - c) = 0, using H1, by rewrite [mul_sub_left_distrib, H1],
|
||||
have H3 : b - c = 0, from sum_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
||||
iff.elim_right !eq_iff_sub_eq_zero H3
|
||||
|
||||
-- TODO: do we want the iff versions?
|
||||
|
||||
definition mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b ⊎ a = -b :=
|
||||
iff.intro
|
||||
(λ H : a * a = b * b,
|
||||
have aux₁ : (a - b) * (a + b) = 0,
|
||||
by rewrite [mul.comm, -mul_self_sub_mul_self_eq, H, sub_self],
|
||||
assert aux₂ : a - b = 0 ⊎ a + b = 0, from !eq_zero_or_eq_zero_of_mul_eq_zero aux₁,
|
||||
sum.rec_on aux₂
|
||||
(λ H : a - b = 0, sum.inl (eq_of_sub_eq_zero H))
|
||||
(λ H : a + b = 0, sum.inr (eq_neg_of_add_eq_zero H)))
|
||||
(λ H : a = b ⊎ a = -b, sum.rec_on H
|
||||
(λ a_eq_b, by rewrite a_eq_b)
|
||||
(λ a_eq_mb, by rewrite [a_eq_mb, neg_mul_neg]))
|
||||
|
||||
definition mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ⊎ a = -1 :=
|
||||
assert aux : a * a = 1 * 1 ↔ a = 1 ⊎ a = -1, from mul_self_eq_mul_self_iff a 1,
|
||||
by rewrite mul_one at aux; exact aux
|
||||
|
||||
-- TODO: c - b * c → c = 0 ⊎ b = 1 and variants
|
||||
|
||||
definition dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : (a * b ∣ a * c)) : (b ∣ c) :=
|
||||
dvd.elim Hdvd
|
||||
(take d,
|
||||
assume H : a * c = a * b * d,
|
||||
have H1 : b * d = c, from mul.cancel_left Ha (mul.assoc a b d ▸ H⁻¹),
|
||||
dvd.intro H1)
|
||||
|
||||
definition dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : (b * a ∣ c * a)) : (b ∣ c) :=
|
||||
dvd.elim Hdvd
|
||||
(take d,
|
||||
assume H : c * a = b * a * d,
|
||||
have H1 : b * d * a = c * a, from by rewrite [mul.right_comm, -H],
|
||||
have H2 : b * d = c, from mul.cancel_right Ha H1,
|
||||
dvd.intro H2)
|
||||
end
|
||||
|
||||
end algebra
|
|
@ -2,7 +2,7 @@
|
|||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.pathover
|
||||
Module: cubical.pathover
|
||||
Author: Floris van Doorn
|
||||
|
||||
Theorems about pathovers
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.square
|
||||
Module: cubical.square
|
||||
Author: Floris van Doorn
|
||||
|
||||
Theorems about square
|
||||
|
|
|
@ -73,7 +73,7 @@ namespace sphere
|
|||
end ops
|
||||
|
||||
definition bool_of_sphere [reducible] : sphere 0 → bool :=
|
||||
suspension.rec tt ff (λx, empty.elim _ x)
|
||||
suspension.rec tt ff (λx, empty.elim x)
|
||||
|
||||
definition sphere_of_bool [reducible] : bool → sphere 0
|
||||
| tt := !north
|
||||
|
|
|
@ -15,9 +15,10 @@ import init.ua init.funext
|
|||
import init.hedberg init.nat init.hit
|
||||
|
||||
namespace core
|
||||
export bool empty unit sum sigma
|
||||
export bool empty unit sum
|
||||
export sigma (hiding pr1 pr2)
|
||||
export [notations] prod
|
||||
export eq (idp idpath concat inverse transport ap ap10 cast tr_inv homotopy ap11 apd)
|
||||
export eq (idp idpath concat inverse transport ap ap10 cast tr_inv homotopy ap11 apd refl)
|
||||
export [declarations] function
|
||||
export equiv (to_inv to_right_inv to_left_inv)
|
||||
export is_equiv (inv right_inv left_inv)
|
||||
|
|
|
@ -151,6 +151,8 @@ namespace iff
|
|||
definition elim_right (H : a ↔ b) : b → a :=
|
||||
elim (assume H₁ H₂, H₂) H
|
||||
|
||||
definition mp' := @elim_right
|
||||
|
||||
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||||
intro
|
||||
(assume Hna, mt (elim_right H₁) Hna)
|
||||
|
@ -360,3 +362,24 @@ decidable.rec
|
|||
definition dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||
rfl
|
||||
end
|
||||
open eq.ops unit
|
||||
|
||||
definition is_unit (c : Type) [H : decidable c] : Type₀ :=
|
||||
if c then unit else empty
|
||||
|
||||
definition is_empty (c : Type) [H : decidable c] : Type₀ :=
|
||||
if c then empty else unit
|
||||
|
||||
theorem of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c :=
|
||||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂))
|
||||
|
||||
notation `dec_trivial` := of_is_unit star
|
||||
|
||||
theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c :=
|
||||
decidable.rec_on H₁ (λ Hc, absurd star (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||||
|
||||
theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c :=
|
||||
decidable.rec_on H₁ (λ Hc, empty.rec _ (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||||
|
||||
theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c :=
|
||||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd star (if_neg Hnc ▸ H₂))
|
||||
|
|
|
@ -2,20 +2,18 @@
|
|||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module init.nat
|
||||
Module: init.nat
|
||||
Authors: Floris van Doorn, Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.wf init.tactic init.hedberg init.util init.types
|
||||
|
||||
open eq.ops decidable sum
|
||||
open eq decidable sum lift
|
||||
|
||||
namespace nat
|
||||
open lift
|
||||
notation `ℕ` := nat
|
||||
|
||||
inductive lt (a : nat) : nat → Type :=
|
||||
inductive lt (a : nat) : nat → Type₀ :=
|
||||
| base : lt a (succ a)
|
||||
| step : Π {b}, lt a b → lt a (succ b)
|
||||
|
||||
|
@ -31,43 +29,33 @@ namespace nat
|
|||
protected definition is_inhabited [instance] : inhabited nat :=
|
||||
inhabited.mk zero
|
||||
|
||||
protected definition has_decidable_eq [instance] : decidable_eq nat :=
|
||||
λn m : nat,
|
||||
have general : ∀n, decidable (n = m), from
|
||||
nat.rec_on m
|
||||
(λ n, nat.cases_on n
|
||||
(inl rfl)
|
||||
(λ m, inr (by contradiction)))
|
||||
(λ (m' : nat) (ih : ∀n, decidable (n = m')) (n : nat), nat.cases_on n
|
||||
(inr (λ h, down (nat.no_confusion h)))
|
||||
(λ (n' : nat),
|
||||
decidable.rec_on (ih n')
|
||||
(assume Heq : n' = m', inl (eq.rec_on Heq rfl))
|
||||
(assume Hne : n' ≠ m',
|
||||
have H1 : succ n' ≠ succ m', from
|
||||
assume Heq, down (nat.no_confusion Heq (λ e : n' = m', Hne e)),
|
||||
inr H1))),
|
||||
general n
|
||||
protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y)
|
||||
| has_decidable_eq zero zero := inl rfl
|
||||
| has_decidable_eq (succ x) zero := inr (by contradiction)
|
||||
| has_decidable_eq zero (succ y) := inr (by contradiction)
|
||||
| has_decidable_eq (succ x) (succ y) :=
|
||||
match has_decidable_eq x y with
|
||||
| inl xeqy := inl (by rewrite xeqy)
|
||||
| inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney)
|
||||
end
|
||||
|
||||
-- less-than is well-founded
|
||||
definition lt.wf [instance] : well_founded lt :=
|
||||
well_founded.intro (λn, nat.rec_on n
|
||||
(acc.intro zero (λ (y : nat) (hlt : y < zero),
|
||||
have aux : ∀ {n₁}, y < n₁ → zero = n₁ → acc lt y, from
|
||||
λ n₁ hlt, lt.cases_on hlt
|
||||
(λ heq, down (nat.no_confusion heq))
|
||||
(λ b hlt heq, down (nat.no_confusion heq)),
|
||||
λ n₁ hlt, nat.lt.cases_on hlt
|
||||
(by contradiction)
|
||||
(by contradiction),
|
||||
aux hlt rfl))
|
||||
(λ (n : nat) (ih : acc lt n),
|
||||
acc.intro (succ n) (λ (m : nat) (hlt : m < succ n),
|
||||
have aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, from
|
||||
λ n₁ hlt, lt.cases_on hlt
|
||||
(λ (heq : succ n = succ m),
|
||||
down (nat.no_confusion heq (λ (e : n = m),
|
||||
eq.rec_on e ih)))
|
||||
(λ b (hlt : m < b) (heq : succ n = succ b),
|
||||
down (nat.no_confusion heq (λ (e : n = b),
|
||||
acc.inv (eq.rec_on e ih) hlt))),
|
||||
λ n₁ hlt, nat.lt.cases_on hlt
|
||||
(λ (sn_eq_sm : succ n = succ m),
|
||||
by injection sn_eq_sm with neqm; rewrite neqm at ih; exact ih)
|
||||
(λ b (hlt : m < b) (sn_eq_sb : succ n = succ b),
|
||||
by injection sn_eq_sb with neqb; rewrite neqb at ih; exact acc.inv ih hlt),
|
||||
aux hlt rfl)))
|
||||
|
||||
definition measure {A : Type} (f : A → nat) : A → A → Type₀ :=
|
||||
|
@ -77,7 +65,7 @@ namespace nat
|
|||
inv_image.wf f lt.wf
|
||||
|
||||
definition not_lt_zero (a : nat) : ¬ a < zero :=
|
||||
have aux : ∀ {b}, a < b → b = zero → empty, from
|
||||
have aux : Π {b}, a < b → b = zero → empty, from
|
||||
λ b H, lt.cases_on H
|
||||
(by contradiction)
|
||||
(by contradiction),
|
||||
|
@ -89,70 +77,68 @@ namespace nat
|
|||
(λ a (hlt : zero < succ a), lt.step hlt)
|
||||
|
||||
definition lt.trans [trans] {a b c : nat} (H₁ : a < b) (H₂ : b < c) : a < c :=
|
||||
have aux : ∀ {d}, d < c → b = d → a < b → a < c, from
|
||||
(λ d H, lt.rec_on H
|
||||
(λ h₁ h₂, lt.step (eq.rec_on h₁ h₂))
|
||||
(λ b hl ih h₁ h₂, lt.step (ih h₁ h₂))),
|
||||
aux H₂ rfl H₁
|
||||
have aux : a < b → a < c, from
|
||||
lt.rec_on H₂
|
||||
(λ h₁, lt.step h₁)
|
||||
(λ b₁ bb₁ ih h₁, lt.step (ih h₁)),
|
||||
aux H₁
|
||||
|
||||
definition lt.succ_of_lt {a b : nat} (H : a < b) : succ a < succ b :=
|
||||
definition succ_lt_succ {a b : nat} (H : a < b) : succ a < succ b :=
|
||||
lt.rec_on H
|
||||
(lt.base (succ a))
|
||||
(λ b hlt ih, lt.trans ih (lt.base (succ b)))
|
||||
|
||||
definition lt.of_succ_lt {a b : nat} (H : succ a < b) : a < b :=
|
||||
have aux : ∀ {a₁}, a₁ < b → succ a = a₁ → a < b, from
|
||||
λ a₁ H, lt.rec_on H
|
||||
(λ e₁, eq.rec_on e₁ (lt.step (lt.base a)))
|
||||
(λ d hlt ih e₁, lt.step (ih e₁)),
|
||||
aux H rfl
|
||||
definition lt_of_succ_lt {a b : nat} (H : succ a < b) : a < b :=
|
||||
lt.rec_on H
|
||||
(lt.step (lt.base a))
|
||||
(λ b h ih, lt.step ih)
|
||||
|
||||
definition lt.of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b :=
|
||||
definition lt_of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b :=
|
||||
have aux : pred (succ a) < pred (succ b), from
|
||||
lt.rec_on H
|
||||
(lt.base a)
|
||||
(λ (b : nat) (hlt : succ a < b) ih,
|
||||
show pred (succ a) < pred (succ b), from
|
||||
lt.of_succ_lt hlt),
|
||||
lt_of_succ_lt hlt),
|
||||
aux
|
||||
|
||||
definition decidable_lt [instance] : decidable_rel lt :=
|
||||
λ a b, nat.rec_on b
|
||||
(λ (a : nat), inr (not_lt_zero a))
|
||||
(λ (b₁ : nat) (ih : ∀ a, decidable (a < b₁)) (a : nat), nat.cases_on a
|
||||
(λ (b₁ : nat) (ih : Π a, decidable (a < b₁)) (a : nat), nat.cases_on a
|
||||
(inl !zero_lt_succ)
|
||||
(λ a, decidable.rec_on (ih a)
|
||||
(λ h_pos : a < b₁, inl (lt.succ_of_lt h_pos))
|
||||
(λ h_pos : a < b₁, inl (succ_lt_succ h_pos))
|
||||
(λ h_neg : ¬ a < b₁,
|
||||
have aux : ¬ succ a < succ b₁, from
|
||||
λ h : succ a < succ b₁, h_neg (lt.of_succ_lt_succ h),
|
||||
λ h : succ a < succ b₁, h_neg (lt_of_succ_lt_succ h),
|
||||
inr aux)))
|
||||
a
|
||||
|
||||
definition le.refl (a : nat) : a ≤ a :=
|
||||
lt.base a
|
||||
|
||||
definition le.of_lt {a b : nat} (H : a < b) : a ≤ b :=
|
||||
definition le_of_lt {a b : nat} (H : a < b) : a ≤ b :=
|
||||
lt.step H
|
||||
|
||||
definition eq_or_lt_of_le {a b : nat} (H : a ≤ b) : sum (a = b) (a < b) :=
|
||||
have aux : Π (a₁ b₁ : nat) (hlt : a₁ < b₁), a₁ = a → b₁ = (succ b) → sum (a = b) (a < b), from
|
||||
λ a₁ b₁ hlt, lt.rec_on hlt
|
||||
(λ h₁, eq.rec_on h₁ (λ h₂, down (nat.no_confusion h₂ (λ h₃, eq.rec_on h₃ (sum.inl rfl)))))
|
||||
(λ b₁ hlt ih h₁, eq.rec_on h₁ (λ h₂, down (nat.no_confusion h₂ (λ h₃, eq.rec_on h₃ (sum.inr hlt))))),
|
||||
aux a (succ b) H rfl rfl
|
||||
definition eq_or_lt_of_le {a b : nat} (H : a ≤ b) : a = b ⊎ a < b :=
|
||||
begin
|
||||
cases H with b hlt,
|
||||
apply sum.inl rfl,
|
||||
apply sum.inr hlt
|
||||
end
|
||||
|
||||
definition le.of_eq_or_lt {a b : nat} (H : sum (a = b) (a < b)) : a ≤ b :=
|
||||
definition le_of_eq_or_lt {a b : nat} (H : a = b ⊎ a < b) : a ≤ b :=
|
||||
sum.rec_on H
|
||||
(λ hl, eq.rec_on hl !le.refl)
|
||||
(λ hr, le.of_lt hr)
|
||||
(λ hr, le_of_lt hr)
|
||||
|
||||
definition decidable_le [instance] : decidable_rel le :=
|
||||
λ a b, decidable_iff_equiv _ (iff.intro le.of_eq_or_lt eq_or_lt_of_le)
|
||||
λ a b, decidable_iff_equiv _ (iff.intro le_of_eq_or_lt eq_or_lt_of_le)
|
||||
|
||||
definition le.rec_on {a : nat} {P : nat → Type} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : ∀ b, a < b → P b) : P b :=
|
||||
definition le.rec_on {a : nat} {P : nat → Type} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : Π b, a < b → P b) : P b :=
|
||||
begin
|
||||
cases H with b' hlt,
|
||||
cases H with b hlt,
|
||||
apply H₁,
|
||||
apply H₂ b hlt
|
||||
end
|
||||
|
@ -161,25 +147,25 @@ namespace nat
|
|||
nat.rec_on a
|
||||
!not_lt_zero
|
||||
(λ (a : nat) (ih : ¬ a < a) (h : succ a < succ a),
|
||||
ih (lt.of_succ_lt_succ h))
|
||||
ih (lt_of_succ_lt_succ h))
|
||||
|
||||
definition lt.asymm {a b : nat} (H : a < b) : ¬ b < a :=
|
||||
lt.rec_on H
|
||||
(λ h : succ a < a, !lt.irrefl (lt.of_succ_lt h))
|
||||
(λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt.of_succ_lt h))
|
||||
(λ h : succ a < a, !lt.irrefl (lt_of_succ_lt h))
|
||||
(λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt_of_succ_lt h))
|
||||
|
||||
definition lt.trichotomy (a b : nat) : a < b ⊎ a = b ⊎ b < a :=
|
||||
nat.rec_on b
|
||||
(λa, nat.cases_on a
|
||||
(sum.inr (sum.inl rfl))
|
||||
(λ a₁, sum.inr (sum.inr !zero_lt_succ)))
|
||||
(λ b₁ (ih : ∀a, a < b₁ ⊎ a = b₁ ⊎ b₁ < a) (a : nat), nat.cases_on a
|
||||
(λ b₁ (ih : Πa, a < b₁ ⊎ a = b₁ ⊎ b₁ < a) (a : nat), nat.cases_on a
|
||||
(sum.inl !zero_lt_succ)
|
||||
(λ a, sum.rec_on (ih a)
|
||||
(λ h : a < b₁, sum.inl (lt.succ_of_lt h))
|
||||
(λ h : a < b₁, sum.inl (succ_lt_succ h))
|
||||
(λ h, sum.rec_on h
|
||||
(λ h : a = b₁, sum.inr (sum.inl (eq.rec_on h rfl)))
|
||||
(λ h : b₁ < a, sum.inr (sum.inr (lt.succ_of_lt h))))))
|
||||
(λ h : b₁ < a, sum.inr (sum.inr (succ_lt_succ h))))))
|
||||
a
|
||||
|
||||
definition eq_or_lt_of_not_lt {a b : nat} (hnlt : ¬ a < b) : a = b ⊎ b < a :=
|
||||
|
@ -191,13 +177,13 @@ namespace nat
|
|||
h
|
||||
|
||||
definition lt_of_succ_le {a b : nat} (h : succ a ≤ b) : a < b :=
|
||||
lt.of_succ_lt_succ h
|
||||
lt_of_succ_lt_succ h
|
||||
|
||||
definition le.step {a b : nat} (h : a ≤ b) : a ≤ succ b :=
|
||||
definition le_succ_of_le {a b : nat} (h : a ≤ b) : a ≤ succ b :=
|
||||
lt.step h
|
||||
|
||||
definition succ_le_of_lt {a b : nat} (h : a < b) : succ a ≤ b :=
|
||||
lt.succ_of_lt h
|
||||
succ_lt_succ h
|
||||
|
||||
definition le.trans [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c :=
|
||||
begin
|
||||
|
@ -206,18 +192,18 @@ namespace nat
|
|||
apply lt.trans hlt h₂
|
||||
end
|
||||
|
||||
definition lt.of_le_of_lt [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c :=
|
||||
definition lt_of_le_of_lt [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c :=
|
||||
begin
|
||||
cases h₁ with b' hlt,
|
||||
apply h₂,
|
||||
apply lt.trans hlt h₂
|
||||
end
|
||||
|
||||
definition lt.of_lt_of_le [trans] {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c :=
|
||||
definition lt_of_lt_of_le [trans] {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c :=
|
||||
begin
|
||||
cases h₁ with b' hlt,
|
||||
apply lt.of_succ_lt_succ h₂,
|
||||
apply lt.trans hlt (lt.of_succ_lt_succ h₂)
|
||||
apply lt_of_succ_lt_succ h₂,
|
||||
apply lt.trans hlt (lt_of_succ_lt_succ h₂)
|
||||
end
|
||||
|
||||
definition max (a b : nat) : nat :=
|
||||
|
@ -226,40 +212,44 @@ namespace nat
|
|||
definition min (a b : nat) : nat :=
|
||||
if a < b then a else b
|
||||
|
||||
definition max_a_a (a : nat) : a = max a a :=
|
||||
definition max_self (a : nat) : max a a = a :=
|
||||
eq.rec_on !if_t_t rfl
|
||||
|
||||
definition max.eq_right {a b : nat} (H : a < b) : max a b = b :=
|
||||
definition max_eq_right {a b : nat} (H : a < b) : max a b = b :=
|
||||
if_pos H
|
||||
|
||||
definition max.eq_left {a b : nat} (H : ¬ a < b) : max a b = a :=
|
||||
definition max_eq_left {a b : nat} (H : ¬ a < b) : max a b = a :=
|
||||
if_neg H
|
||||
|
||||
definition max.right_eq {a b : nat} (H : a < b) : b = max a b :=
|
||||
eq.rec_on (max.eq_right H) rfl
|
||||
definition eq_max_right {a b : nat} (H : a < b) : b = max a b :=
|
||||
eq.rec_on (max_eq_right H) rfl
|
||||
|
||||
definition max.left_eq {a b : nat} (H : ¬ a < b) : a = max a b :=
|
||||
eq.rec_on (max.eq_left H) rfl
|
||||
definition eq_max_left {a b : nat} (H : ¬ a < b) : a = max a b :=
|
||||
eq.rec_on (max_eq_left H) rfl
|
||||
|
||||
definition max.left (a b : nat) : a ≤ max a b :=
|
||||
definition le_max_left (a b : nat) : a ≤ max a b :=
|
||||
by_cases
|
||||
(λ h : a < b, le.of_lt (eq.rec_on (max.right_eq h) h))
|
||||
(λ h : ¬ a < b, eq.rec_on (max.eq_left h) !le.refl)
|
||||
(λ h : a < b, le_of_lt (eq.rec_on (eq_max_right h) h))
|
||||
(λ h : ¬ a < b, eq.rec_on (eq_max_left h) !le.refl)
|
||||
|
||||
definition max.right (a b : nat) : b ≤ max a b :=
|
||||
definition le_max_right (a b : nat) : b ≤ max a b :=
|
||||
by_cases
|
||||
(λ h : a < b, eq.rec_on (max.eq_right h) !le.refl)
|
||||
(λ h : a < b, eq.rec_on (eq_max_right h) !le.refl)
|
||||
(λ h : ¬ a < b, sum.rec_on (eq_or_lt_of_not_lt h)
|
||||
(λ heq, eq.rec_on heq (eq.rec_on (max_a_a a) !le.refl))
|
||||
(λ heq, eq.rec_on heq (eq.rec_on (inverse (max_self a)) !le.refl))
|
||||
(λ h : b < a,
|
||||
have aux : a = max a b, from max.left_eq (lt.asymm h),
|
||||
eq.rec_on aux (le.of_lt h)))
|
||||
have aux : a = max a b, from eq_max_left (lt.asymm h),
|
||||
eq.rec_on aux (le_of_lt h)))
|
||||
|
||||
abbreviation gt a b := lt b a
|
||||
definition gt [reducible] a b := lt b a
|
||||
definition decidable_gt [instance] : decidable_rel gt :=
|
||||
_
|
||||
|
||||
notation a > b := gt a b
|
||||
|
||||
abbreviation ge a b := le b a
|
||||
definition ge [reducible] a b := le b a
|
||||
definition decidable_ge [instance] : decidable_rel ge :=
|
||||
_
|
||||
|
||||
notation a ≥ b := ge a b
|
||||
|
||||
|
@ -275,12 +265,14 @@ namespace nat
|
|||
|
||||
notation a * b := mul a b
|
||||
|
||||
section
|
||||
local attribute sub [reducible]
|
||||
definition succ_sub_succ_eq_sub (a b : nat) : succ a - succ b = a - b :=
|
||||
nat.rec_on b
|
||||
rfl
|
||||
(λ b₁ (ih : succ a - succ b₁ = a - b₁),
|
||||
eq.rec_on ih (eq.refl (pred (succ a - succ b₁))))
|
||||
end
|
||||
|
||||
definition sub_eq_succ_sub_succ (a b : nat) : a - b = succ a - succ b :=
|
||||
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
|
||||
|
@ -288,15 +280,12 @@ namespace nat
|
|||
definition zero_sub_eq_zero (a : nat) : zero - a = zero :=
|
||||
nat.rec_on a
|
||||
rfl
|
||||
(λ a₁ (ih : zero - a₁ = zero), calc
|
||||
zero - succ a₁ = pred (zero - a₁) : rfl
|
||||
... = pred zero : ih
|
||||
... = zero : rfl)
|
||||
(λ a₁ (ih : zero - a₁ = zero), ap pred ih)
|
||||
|
||||
definition zero_eq_zero_sub (a : nat) : zero = zero - a :=
|
||||
eq.rec_on (zero_sub_eq_zero a) rfl
|
||||
|
||||
definition sub.lt {a b : nat} : zero < a → zero < b → a - b < a :=
|
||||
definition sub_lt {a b : nat} : zero < a → zero < b → a - b < a :=
|
||||
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
|
||||
λa h₁, lt.rec_on h₁
|
||||
(λb h₂, lt.cases_on h₂
|
||||
|
@ -314,7 +303,7 @@ namespace nat
|
|||
definition pred_le (a : nat) : pred a ≤ a :=
|
||||
nat.cases_on a
|
||||
(le.refl zero)
|
||||
(λ a₁, le.of_lt (lt.base a₁))
|
||||
(λ a₁, le_of_lt (lt.base a₁))
|
||||
|
||||
definition sub_le (a b : nat) : a - b ≤ a :=
|
||||
nat.rec_on b
|
||||
|
|
|
@ -132,7 +132,7 @@ namespace is_trunc
|
|||
have base : ∀k A, k ≤ -2 → is_trunc k A → (is_trunc -2 A), from
|
||||
λ k A, trunc_index.cases_on k
|
||||
(λh1 h2, h2)
|
||||
(λk h1 h2, empty.elim (is_trunc -2 A) (trunc_index.empty_of_succ_le_minus_two h1)),
|
||||
(λk h1 h2, empty.elim (trunc_index.empty_of_succ_le_minus_two h1)),
|
||||
have step : Π (m : trunc_index)
|
||||
(IHm : Π (n : trunc_index) (A : Type), n ≤ m → is_trunc n A → is_trunc m A)
|
||||
(n : trunc_index) (A : Type)
|
||||
|
|
|
@ -14,7 +14,7 @@ import .num .wf
|
|||
|
||||
namespace empty
|
||||
|
||||
protected theorem elim (A : Type) (H : empty) : A :=
|
||||
protected theorem elim {A : Type} (H : empty) : A :=
|
||||
empty.rec (λe, A) H
|
||||
|
||||
end empty
|
||||
|
@ -57,6 +57,22 @@ namespace sum
|
|||
reserve infixr `+`:25 -- conflicts with notation for addition
|
||||
infixr `+` := sum
|
||||
end low_precedence_plus
|
||||
|
||||
variables {a b c d : Type}
|
||||
definition sum_of_sum_of_imp_of_imp (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → d) : c ⊎ d :=
|
||||
sum.rec_on H₁
|
||||
(assume Ha : a, sum.inl (H₂ Ha))
|
||||
(assume Hb : b, sum.inr (H₃ Hb))
|
||||
|
||||
definition sum_of_sum_of_imp_left (H₁ : a ⊎ c) (H : a → b) : b ⊎ c :=
|
||||
sum.rec_on H₁
|
||||
(assume H₂ : a, sum.inl (H H₂))
|
||||
(assume H₂ : c, sum.inr H₂)
|
||||
|
||||
definition sum_of_sum_of_imp_right (H₁ : c ⊎ a) (H : a → b) : c ⊎ b :=
|
||||
sum.rec_on H₁
|
||||
(assume H₂ : c, sum.inl H₂)
|
||||
(assume H₂ : a, sum.inr (H H₂))
|
||||
end sum
|
||||
|
||||
-- Product type
|
||||
|
|
784
hott/types/int/basic.hlean
Normal file
784
hott/types/int/basic.hlean
Normal file
|
@ -0,0 +1,784 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: int.basic
|
||||
Authors: Floris van Doorn, Jeremy Avigad
|
||||
|
||||
The integers, with addition, multiplication, and subtraction. The representation of the integers is
|
||||
chosen to compute efficiently.
|
||||
|
||||
To faciliate proving things about these operations, we show that the integers are a quotient of
|
||||
ℕ × ℕ with the usual equivalence relation, ≡, and functions
|
||||
|
||||
abstr : ℕ × ℕ → ℤ
|
||||
repr : ℤ → ℕ × ℕ
|
||||
|
||||
satisfying:
|
||||
|
||||
abstr_repr (a : ℤ) : abstr (repr a) = a
|
||||
repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p
|
||||
abstr_eq (p q : ℕ × ℕ) : p ≡ q → abstr p = abstr q
|
||||
|
||||
For example, to "lift" statements about add to statements about padd, we need to prove the
|
||||
following:
|
||||
|
||||
repr_add (a b : ℤ) : repr (a + b) = padd (repr a) (repr b)
|
||||
padd_congr (p p' q q' : ℕ × ℕ) (H1 : p ≡ p') (H2 : q ≡ q') : padd p q ≡ p' q'
|
||||
|
||||
Ported from standard library
|
||||
-/
|
||||
import types.nat.sub algebra.relation types.prod
|
||||
|
||||
open core nat decidable prod relation prod
|
||||
|
||||
/- the type of integers -/
|
||||
|
||||
inductive int : Type :=
|
||||
| of_nat : nat → int
|
||||
| neg_succ_of_nat : nat → int
|
||||
|
||||
notation `ℤ` := int
|
||||
attribute int.of_nat [coercion]
|
||||
definition int.of_num [coercion] [reducible] (n : num) : ℤ := int.of_nat (nat.of_num n)
|
||||
|
||||
namespace int
|
||||
|
||||
/- definitions of basic functions -/
|
||||
|
||||
definition neg_of_nat (m : ℕ) : ℤ :=
|
||||
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
||||
|
||||
definition sub_nat_nat (m n : ℕ) : ℤ :=
|
||||
nat.cases_on (n - m)
|
||||
(of_nat (m - n)) -- m ≥ n
|
||||
(take k, neg_succ_of_nat k) -- m < n, and n - m = succ k
|
||||
|
||||
definition neg (a : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
nat.cases_on m 0 (take m', neg_succ_of_nat m'))
|
||||
(take m, of_nat (succ m)) -- a = neg_succ_of_nat m
|
||||
|
||||
definition add (a b : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
int.cases_on b
|
||||
(take n, of_nat (m + n)) -- b = of_nat n
|
||||
(take n, sub_nat_nat m (succ n))) -- b = neg_succ_of_nat n
|
||||
(take m, -- a = neg_succ_of_nat m
|
||||
int.cases_on b
|
||||
(take n, sub_nat_nat n (succ m)) -- b = of_nat n
|
||||
(take n, neg_of_nat (succ m + succ n))) -- b = neg_succ_of_nat n
|
||||
|
||||
definition mul (a b : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
int.cases_on b
|
||||
(take n, of_nat (m * n)) -- b = of_nat n
|
||||
(take n, neg_of_nat (m * succ n))) -- b = neg_succ_of_nat n
|
||||
(take m, -- a = neg_succ_of_nat m
|
||||
int.cases_on b
|
||||
(take n, neg_of_nat (succ m * n)) -- b = of_nat n
|
||||
(take n, of_nat (succ m * succ n))) -- b = neg_succ_of_nat n
|
||||
|
||||
/- notation -/
|
||||
|
||||
notation `-[` n `+1]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||||
prefix - := int.neg
|
||||
infix + := int.add
|
||||
infix * := int.mul
|
||||
|
||||
/- some basic functions and properties -/
|
||||
|
||||
definition of_nat.inj {m n : ℕ} (H : of_nat m = of_nat n) : m = n :=
|
||||
by injection H; assumption
|
||||
|
||||
definition neg_succ_of_nat.inj {m n : ℕ} (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
|
||||
by injection H; assumption
|
||||
|
||||
definition neg_succ_of_nat_eq (n : ℕ) : -[n +1] = -(n + 1) := rfl
|
||||
|
||||
definition has_decidable_eq [instance] : decidable_eq ℤ :=
|
||||
take a b,
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n,
|
||||
if H : m = n then inl (ap of_nat H) else inr (take H1, H (of_nat.inj H1)))
|
||||
(take n', inr (by contradiction)))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n, inr (by contradiction))
|
||||
(take n',
|
||||
(if H : m' = n' then inl (ap neg_succ_of_nat H) else
|
||||
inr (take H1, H (neg_succ_of_nat.inj H1)))))
|
||||
|
||||
definition of_nat_add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
|
||||
|
||||
definition of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
||||
|
||||
definition of_nat_mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := rfl
|
||||
|
||||
definition sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
||||
have H1 : n - m = 0, from sub_eq_zero_of_le H,
|
||||
calc
|
||||
sub_nat_nat m n = nat.cases_on 0 (of_nat (m - n)) _ : H1 ▸ rfl
|
||||
... = of_nat (m - n) : rfl
|
||||
|
||||
section
|
||||
local attribute sub_nat_nat [reducible]
|
||||
definition sub_nat_nat_of_lt {m n : ℕ} (H : m < n) :
|
||||
sub_nat_nat m n = neg_succ_of_nat (pred (n - m)) :=
|
||||
have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_lt H))⁻¹,
|
||||
calc
|
||||
sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (of_nat (m - n))
|
||||
(take k, neg_succ_of_nat k) : H1 ▸ rfl
|
||||
... = neg_succ_of_nat (pred (n - m)) : rfl
|
||||
end
|
||||
|
||||
definition nat_abs (a : ℤ) : ℕ := int.cases_on a (take n, n) (take n', succ n')
|
||||
|
||||
definition nat_abs_of_nat (n : ℕ) : nat_abs (of_nat n) = n := rfl
|
||||
|
||||
definition nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
||||
int.cases_on a
|
||||
(take m, assume H : nat_abs (of_nat m) = 0, ap of_nat H)
|
||||
(take m', assume H : nat_abs (neg_succ_of_nat m') = 0, absurd H (succ_ne_zero _))
|
||||
|
||||
/- int is a quotient of ordered pairs of natural numbers -/
|
||||
|
||||
protected definition equiv (p q : ℕ × ℕ) : Type₀ := pr1 p + pr2 q = pr2 p + pr1 q
|
||||
|
||||
local infix `≡` := int.equiv
|
||||
|
||||
protected theorem equiv.refl [refl] {p : ℕ × ℕ} : p ≡ p := !add.comm
|
||||
|
||||
protected theorem equiv.symm [symm] {p q : ℕ × ℕ} (H : p ≡ q) : q ≡ p :=
|
||||
calc
|
||||
pr1 q + pr2 p = pr2 p + pr1 q : !add.comm
|
||||
... = pr1 p + pr2 q : H⁻¹
|
||||
... = pr2 q + pr1 p : !add.comm
|
||||
|
||||
protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
||||
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
||||
calc
|
||||
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by exact sorry
|
||||
... = pr2 p + pr1 q + pr2 r : {H1}
|
||||
... = pr2 p + (pr1 q + pr2 r) : by exact sorry
|
||||
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
||||
... = pr2 p + pr1 r + pr2 q : by exact sorry,
|
||||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||||
|
||||
protected definition equiv_equiv : is_equivalence equiv :=
|
||||
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
||||
|
||||
protected definition equiv_cases {p q : ℕ × ℕ} (H : equiv p q) :
|
||||
(pr1 p ≥ pr2 p × pr1 q ≥ pr2 q) ⊎ (pr1 p < pr2 p × pr1 q < pr2 q) :=
|
||||
sum.rec_on (@le_or_gt (pr2 p) (pr1 p))
|
||||
(assume H1: pr1 p ≥ pr2 p,
|
||||
have H2 : pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right H1 (pr2 q),
|
||||
sum.inl (pair H1 (le_of_add_le_add_left H2)))
|
||||
(assume H1: pr1 p < pr2 p,
|
||||
have H2 : pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H1 (pr2 q),
|
||||
sum.inr (pair H1 (lt_of_add_lt_add_left H2)))
|
||||
|
||||
protected definition equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl
|
||||
|
||||
/- the representation and abstraction functions -/
|
||||
|
||||
definition abstr (a : ℕ × ℕ) : ℤ := sub_nat_nat (pr1 a) (pr2 a)
|
||||
|
||||
definition abstr_of_ge {p : ℕ × ℕ} (H : pr1 p ≥ pr2 p) : abstr p = of_nat (pr1 p - pr2 p) :=
|
||||
sub_nat_nat_of_ge H
|
||||
|
||||
definition abstr_of_lt {p : ℕ × ℕ} (H : pr1 p < pr2 p) :
|
||||
abstr p = neg_succ_of_nat (pred (pr2 p - pr1 p)) :=
|
||||
sub_nat_nat_of_lt H
|
||||
|
||||
definition repr (a : ℤ) : ℕ × ℕ := int.cases_on a (take m, (m, 0)) (take m, (0, succ m))
|
||||
|
||||
definition abstr_repr (a : ℤ) : abstr (repr a) = a :=
|
||||
int.cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl)
|
||||
|
||||
definition repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
||||
sum.rec_on (@le_or_gt n m)
|
||||
(take H : m ≥ n,
|
||||
have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
|
||||
H1⁻¹ ▸
|
||||
(calc
|
||||
m - n + n = m : sub_add_cancel H
|
||||
... = 0 + m : zero_add))
|
||||
(take H : m < n,
|
||||
have H1 : repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
||||
H1⁻¹ ▸
|
||||
(calc
|
||||
0 + n = n : zero_add
|
||||
... = n - m + m : sub_add_cancel (le_of_lt H)
|
||||
... = succ (pred (n - m)) + m : (succ_pred_of_pos (sub_pos_of_lt H))⁻¹ᵖ))
|
||||
|
||||
definition repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p :=
|
||||
!prod.eta ▸ !repr_sub_nat_nat
|
||||
|
||||
definition abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q :=
|
||||
sum.rec_on (equiv_cases Hequiv)
|
||||
(assume H2,
|
||||
have H3 : pr1 p ≥ pr2 p, from prod.pr1 H2,
|
||||
have H4 : pr1 q ≥ pr2 q, from prod.pr2 H2,
|
||||
have H5 : pr1 p = pr1 q - pr2 q + pr2 p, from
|
||||
calc
|
||||
pr1 p = pr1 p + pr2 q - pr2 q : add_sub_cancel
|
||||
... = pr2 p + pr1 q - pr2 q : by rewrite [↑int.equiv at Hequiv,Hequiv]
|
||||
... = pr2 p + (pr1 q - pr2 q) : add_sub_assoc H4
|
||||
... = pr1 q - pr2 q + pr2 p : add.comm,
|
||||
have H6 : pr1 p - pr2 p = pr1 q - pr2 q, from
|
||||
calc
|
||||
pr1 p - pr2 p = pr1 q - pr2 q + pr2 p - pr2 p : H5
|
||||
... = pr1 q - pr2 q : add_sub_cancel,
|
||||
abstr_of_ge H3 ⬝ ap of_nat H6 ⬝ (abstr_of_ge H4)⁻¹)
|
||||
(assume H2,
|
||||
have H3 : pr1 p < pr2 p, from prod.pr1 H2,
|
||||
have H4 : pr1 q < pr2 q, from prod.pr2 H2,
|
||||
have H5 : pr2 p = pr2 q - pr1 q + pr1 p, from
|
||||
calc
|
||||
pr2 p = pr2 p + pr1 q - pr1 q : add_sub_cancel
|
||||
... = pr1 p + pr2 q - pr1 q : by rewrite [↑int.equiv at Hequiv,Hequiv]
|
||||
... = pr1 p + (pr2 q - pr1 q) : add_sub_assoc (le_of_lt H4)
|
||||
... = pr2 q - pr1 q + pr1 p : add.comm,
|
||||
have H6 : pr2 p - pr1 p = pr2 q - pr1 q, from
|
||||
calc
|
||||
pr2 p - pr1 p = pr2 q - pr1 q + pr1 p - pr1 p : H5
|
||||
... = pr2 q - pr1 q : add_sub_cancel,
|
||||
abstr_of_lt H3 ⬝ ap neg_succ_of_nat (ap pred H6)⬝ (abstr_of_lt H4)⁻¹)
|
||||
|
||||
definition equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) × (q ≡ q) × (abstr p = abstr q)) :=
|
||||
iff.intro
|
||||
(assume H : equiv p q,
|
||||
pair !equiv.refl (pair !equiv.refl (abstr_eq H)))
|
||||
(assume H : equiv p p × equiv q q × abstr p = abstr q,
|
||||
have H1 : abstr p = abstr q, from prod.pr2 (prod.pr2 H),
|
||||
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
||||
|
||||
definition eq_abstr_of_equiv_repr {a : ℤ} {p : ℕ × ℕ} (Hequiv : repr a ≡ p) : a = abstr p :=
|
||||
calc
|
||||
a = abstr (repr a) : abstr_repr
|
||||
... = abstr p : abstr_eq Hequiv
|
||||
|
||||
definition eq_of_repr_equiv_repr {a b : ℤ} (H : repr a ≡ repr b) : a = b :=
|
||||
calc
|
||||
a = abstr (repr a) : abstr_repr
|
||||
... = abstr (repr b) : abstr_eq H
|
||||
... = b : abstr_repr
|
||||
|
||||
section
|
||||
local attribute abstr [reducible]
|
||||
local attribute dist [reducible]
|
||||
definition nat_abs_abstr (p : ℕ × ℕ) : nat_abs (abstr p) = dist (pr1 p) (pr2 p) :=
|
||||
let m := pr1 p, n := pr2 p in
|
||||
sum.rec_on (@le_or_gt n m)
|
||||
(assume H : m ≥ n,
|
||||
calc
|
||||
nat_abs (abstr (m, n)) = nat_abs (of_nat (m - n)) : int.abstr_of_ge H
|
||||
... = dist m n : dist_eq_sub_of_ge H)
|
||||
(assume H : m < n,
|
||||
calc
|
||||
nat_abs (abstr (m, n)) = nat_abs (neg_succ_of_nat (pred (n - m))) : int.abstr_of_lt H
|
||||
... = succ (pred (n - m)) : rfl
|
||||
... = n - m : succ_pred_of_pos (sub_pos_of_lt H)
|
||||
... = dist m n : dist_eq_sub_of_le (le_of_lt H))
|
||||
end
|
||||
|
||||
definition cases_of_nat (a : ℤ) : (Σn : ℕ, a = of_nat n) ⊎ (Σn : ℕ, a = - of_nat n) :=
|
||||
int.cases_on a
|
||||
(take n, sum.inl (sigma.mk n rfl))
|
||||
(take n', sum.inr (sigma.mk (succ n') rfl))
|
||||
|
||||
definition cases_of_nat_succ (a : ℤ) : (Σn : ℕ, a = of_nat n) ⊎ (Σn : ℕ, a = - (of_nat (succ n))) :=
|
||||
int.cases_on a (take m, sum.inl (sigma.mk _ rfl)) (take m, sum.inr (sigma.mk _ rfl))
|
||||
|
||||
definition by_cases_of_nat {P : ℤ → Type} (a : ℤ)
|
||||
(H1 : Πn : ℕ, P (of_nat n)) (H2 : Πn : ℕ, P (- of_nat n)) :
|
||||
P a :=
|
||||
sum.rec_on (cases_of_nat a)
|
||||
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||||
(assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
|
||||
|
||||
definition by_cases_of_nat_succ {P : ℤ → Type} (a : ℤ)
|
||||
(H1 : Πn : ℕ, P (of_nat n)) (H2 : Πn : ℕ, P (- of_nat (succ n))) :
|
||||
P a :=
|
||||
sum.rec_on (cases_of_nat_succ a)
|
||||
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||||
(assume H, obtain (n : ℕ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
|
||||
|
||||
/-
|
||||
int is a ring
|
||||
-/
|
||||
|
||||
/- addition -/
|
||||
|
||||
definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q)
|
||||
|
||||
definition repr_add (a b : ℤ) : repr (add a b) ≡ padd (repr a) (repr b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n, !equiv.refl)
|
||||
(take n',
|
||||
have H1 : equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
|
||||
from rfl,
|
||||
(!zero_add ▸ H2)⁻¹ ▸ H1))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n,
|
||||
have H1 : equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
|
||||
from rfl,
|
||||
(!zero_add ▸ H2)⁻¹ ▸ H1)
|
||||
(take n',!repr_sub_nat_nat))
|
||||
|
||||
definition padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
||||
calc
|
||||
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : by exact sorry
|
||||
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
||||
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
||||
... = pr2 (padd p q) + pr1 (padd p' q') : by exact sorry
|
||||
|
||||
definition padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
||||
calc
|
||||
padd p q = (pr1 p + pr1 q, pr2 p + pr2 q) : rfl
|
||||
... = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
|
||||
... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm
|
||||
... = padd q p : rfl
|
||||
|
||||
definition padd_assoc (p q r : ℕ × ℕ) : padd (padd p q) r = padd p (padd q r) :=
|
||||
calc
|
||||
padd (padd p q) r = (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) : rfl
|
||||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
|
||||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc
|
||||
... = padd p (padd q r) : rfl
|
||||
|
||||
definition add.comm (a b : ℤ) : a + b = b + a :=
|
||||
begin
|
||||
apply eq_of_repr_equiv_repr,
|
||||
apply equiv.trans,
|
||||
apply repr_add,
|
||||
apply equiv.symm,
|
||||
apply eq.subst (padd_comm (repr b) (repr a)),
|
||||
apply repr_add
|
||||
end
|
||||
|
||||
definition add.assoc (a b c : ℤ) : a + b + c = a + (b + c) :=
|
||||
assert H1 : repr (a + b + c) ≡ padd (padd (repr a) (repr b)) (repr c), from
|
||||
equiv.trans (repr_add (a + b) c) (padd_congr !repr_add !equiv.refl),
|
||||
assert H2 : repr (a + (b + c)) ≡ padd (repr a) (padd (repr b) (repr c)), from
|
||||
equiv.trans (repr_add a (b + c)) (padd_congr !equiv.refl !repr_add),
|
||||
begin
|
||||
apply eq_of_repr_equiv_repr,
|
||||
apply equiv.trans,
|
||||
apply H1,
|
||||
apply eq.subst (padd_assoc _ _ _)⁻¹,
|
||||
apply equiv.symm,
|
||||
apply H2
|
||||
end
|
||||
|
||||
definition add_zero (a : ℤ) : a + 0 = a := int.cases_on a (take m, rfl) (take m', rfl)
|
||||
|
||||
definition zero_add (a : ℤ) : 0 + a = a := add.comm a 0 ▸ add_zero a
|
||||
|
||||
/- negation -/
|
||||
|
||||
definition pneg (p : ℕ × ℕ) : ℕ × ℕ := (pr2 p, pr1 p)
|
||||
|
||||
-- note: this is =, not just ≡
|
||||
definition repr_neg (a : ℤ) : repr (- a) = pneg (repr a) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
nat.cases_on m rfl (take m', rfl))
|
||||
(take m', rfl)
|
||||
|
||||
definition pneg_congr {p p' : ℕ × ℕ} (H : p ≡ p') : pneg p ≡ pneg p' := inverse H
|
||||
|
||||
definition pneg_pneg (p : ℕ × ℕ) : pneg (pneg p) = p := !prod.eta
|
||||
|
||||
definition nat_abs_neg (a : ℤ) : nat_abs (-a) = nat_abs a :=
|
||||
calc
|
||||
nat_abs (-a) = nat_abs (abstr (repr (-a))) : abstr_repr
|
||||
... = nat_abs (abstr (pneg (repr a))) : repr_neg
|
||||
... = dist (pr1 (pneg (repr a))) (pr2 (pneg (repr a))) : nat_abs_abstr
|
||||
... = dist (pr2 (pneg (repr a))) (pr1 (pneg (repr a))) : dist.comm
|
||||
... = nat_abs (abstr (repr a)) : nat_abs_abstr
|
||||
... = nat_abs a : abstr_repr
|
||||
|
||||
definition padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) :=
|
||||
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
||||
|
||||
definition padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
||||
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, from by exact sorry
|
||||
|
||||
definition add.left_inv (a : ℤ) : -a + a = 0 :=
|
||||
have H : repr (-a + a) ≡ repr 0, from
|
||||
calc
|
||||
repr (-a + a) ≡ padd (repr (neg a)) (repr a) : repr_add
|
||||
... ≡ padd (pneg (repr a)) (repr a) : sorry
|
||||
... ≡ repr 0 : padd_pneg,
|
||||
eq_of_repr_equiv_repr H
|
||||
|
||||
/- nat abs -/
|
||||
|
||||
definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p)
|
||||
|
||||
definition pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q :=
|
||||
calc
|
||||
pabs p = nat_abs (abstr p) : nat_abs_abstr
|
||||
... = nat_abs (abstr q) : abstr_eq H
|
||||
... = pabs q : nat_abs_abstr
|
||||
|
||||
definition nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) :=
|
||||
calc
|
||||
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
|
||||
... = pabs (repr a) : nat_abs_abstr
|
||||
|
||||
definition nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
||||
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
||||
calc
|
||||
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
||||
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
||||
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
||||
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
||||
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b),
|
||||
from !dist_add_add_le_add_dist_dist,
|
||||
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
||||
|
||||
section
|
||||
local attribute nat_abs [reducible]
|
||||
definition mul_nat_abs (a b : ℤ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n, rfl)
|
||||
(take n', !nat_abs_neg ▸ rfl))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n, !nat_abs_neg ▸ rfl)
|
||||
(take n', rfl))
|
||||
end
|
||||
|
||||
/- multiplication -/
|
||||
|
||||
definition pmul (p q : ℕ × ℕ) : ℕ × ℕ :=
|
||||
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q)
|
||||
|
||||
definition repr_neg_of_nat (m : ℕ) : repr (neg_of_nat m) = (0, m) :=
|
||||
nat.cases_on m rfl (take m', rfl)
|
||||
|
||||
-- note: we have =, not just ≡
|
||||
definition repr_mul (a b : ℤ) : repr (mul a b) = pmul (repr a) (repr b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n,
|
||||
(calc
|
||||
pmul (repr m) (repr n) = (m * n + 0 * 0, m * 0 + 0 * n) : rfl
|
||||
... = (m * n + 0 * 0, m * 0 + 0) : zero_mul)⁻¹)
|
||||
(take n',
|
||||
(calc
|
||||
pmul (repr m) (repr (neg_succ_of_nat n')) =
|
||||
(m * 0 + 0 * succ n', m * succ n' + 0 * 0) : rfl
|
||||
... = (m * 0 + 0, m * succ n' + 0 * 0) : zero_mul
|
||||
... = repr (mul m (neg_succ_of_nat n')) : repr_neg_of_nat)⁻¹))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n,
|
||||
(calc
|
||||
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
||||
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
||||
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
||||
... = (0 + succ m' * 0, succ m' * n) : {!nat.zero_add}
|
||||
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
||||
(take n',
|
||||
(calc
|
||||
pmul (repr (neg_succ_of_nat m')) (repr (neg_succ_of_nat n')) =
|
||||
(0 + succ m' * succ n', 0 * succ n') : rfl
|
||||
... = (succ m' * succ n', 0 * succ n') : nat.zero_add
|
||||
... = (succ m' * succ n', 0) : zero_mul
|
||||
... = repr (mul (neg_succ_of_nat m') (neg_succ_of_nat n')) : rfl)⁻¹))
|
||||
|
||||
definition equiv_mul_prep {xa ya xb yb xn yn xm ym : ℕ}
|
||||
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
|
||||
: xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) :=
|
||||
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
|
||||
calc
|
||||
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
||||
: by exact sorry
|
||||
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by exact sorry
|
||||
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by exact sorry
|
||||
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
||||
: by exact sorry
|
||||
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
: by exact sorry,
|
||||
nat.add.cancel_right H3
|
||||
|
||||
definition pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
||||
equiv_mul_prep H1 H2
|
||||
|
||||
definition pmul_comm (p q : ℕ × ℕ) : pmul p q = pmul q p :=
|
||||
calc
|
||||
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) =
|
||||
(pr1 q * pr1 p + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr1 q * pr2 p) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 q * pr2 p + pr2 q * pr1 p) : nat.add.comm
|
||||
|
||||
definition mul.comm (a b : ℤ) : a * b = b * a :=
|
||||
eq_of_repr_equiv_repr
|
||||
((calc
|
||||
repr (a * b) = pmul (repr a) (repr b) : repr_mul
|
||||
... = pmul (repr b) (repr a) : pmul_comm
|
||||
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
||||
|
||||
definition pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
||||
by exact sorry
|
||||
|
||||
definition mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
||||
eq_of_repr_equiv_repr
|
||||
((calc
|
||||
repr (a * b * c) = pmul (repr (a * b)) (repr c) : repr_mul
|
||||
... = pmul (pmul (repr a) (repr b)) (repr c) : repr_mul
|
||||
... = pmul (repr a) (pmul (repr b) (repr c)) : pmul_assoc
|
||||
... = pmul (repr a) (repr (b * c)) : repr_mul
|
||||
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
||||
|
||||
definition mul_one (a : ℤ) : a * 1 = a :=
|
||||
eq_of_repr_equiv_repr (equiv_of_eq
|
||||
((calc
|
||||
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
||||
... = (pr1 (repr a), pr2 (repr a)) : by exact sorry
|
||||
... = repr a : prod.eta)))
|
||||
|
||||
definition one_mul (a : ℤ) : 1 * a = a :=
|
||||
mul.comm a 1 ▸ mul_one a
|
||||
|
||||
definition mul.right_distrib (a b c : ℤ) : (a + b) * c = a * c + b * c :=
|
||||
eq_of_repr_equiv_repr
|
||||
(calc
|
||||
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
||||
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
||||
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : by exact sorry
|
||||
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
||||
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
||||
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
||||
|
||||
definition mul.left_distrib (a b c : ℤ) : a * (b + c) = a * b + a * c :=
|
||||
calc
|
||||
a * (b + c) = (b + c) * a : mul.comm a (b + c)
|
||||
... = b * a + c * a : mul.right_distrib b c a
|
||||
... = a * b + c * a : {mul.comm b a}
|
||||
... = a * b + a * c : {mul.comm c a}
|
||||
|
||||
definition zero_ne_one : (typeof 0 : int) ≠ 1 :=
|
||||
assume H : 0 = 1,
|
||||
show empty, from succ_ne_zero 0 ((of_nat.inj H)⁻¹)
|
||||
|
||||
definition eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ⊎ b = 0 :=
|
||||
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
||||
calc
|
||||
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
|
||||
... = (nat_abs 0) : {H}
|
||||
... = nat.zero : nat_abs_of_nat nat.zero,
|
||||
have H3 : (nat_abs a) = nat.zero ⊎ (nat_abs b) = nat.zero,
|
||||
from eq_zero_or_eq_zero_of_mul_eq_zero H2,
|
||||
sum_of_sum_of_imp_of_imp H3
|
||||
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
||||
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
||||
|
||||
section
|
||||
open [classes] algebra
|
||||
|
||||
protected definition integral_domain [instance] [reducible] : algebra.integral_domain int :=
|
||||
⦃algebra.integral_domain,
|
||||
add := add,
|
||||
add_assoc := add.assoc,
|
||||
zero := zero,
|
||||
zero_add := zero_add,
|
||||
add_zero := add_zero,
|
||||
neg := neg,
|
||||
add_left_inv := add.left_inv,
|
||||
add_comm := add.comm,
|
||||
mul := mul,
|
||||
mul_assoc := mul.assoc,
|
||||
one := (of_num 1),
|
||||
one_mul := one_mul,
|
||||
mul_one := mul_one,
|
||||
left_distrib := mul.left_distrib,
|
||||
right_distrib := mul.right_distrib,
|
||||
mul_comm := mul.comm,
|
||||
eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero,
|
||||
is_hset_carrier := is_hset_of_decidable_eq⦄
|
||||
end
|
||||
|
||||
/- instantiate ring theorems to int -/
|
||||
|
||||
section port_algebra
|
||||
open [classes] algebra
|
||||
definition mul.left_comm : Πa b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
||||
definition mul.right_comm : Πa b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
||||
definition add.left_comm : Πa b c : ℤ, a + (b + c) = b + (a + c) := algebra.add.left_comm
|
||||
definition add.right_comm : Πa b c : ℤ, (a + b) + c = (a + c) + b := algebra.add.right_comm
|
||||
definition add.left_cancel : Π{a b c : ℤ}, a + b = a + c → b = c := @algebra.add.left_cancel _ _
|
||||
definition add.right_cancel : Π{a b c : ℤ}, a + b = c + b → a = c := @algebra.add.right_cancel _ _
|
||||
definition neg_add_cancel_left : Πa b : ℤ, -a + (a + b) = b := algebra.neg_add_cancel_left
|
||||
definition neg_add_cancel_right : Πa b : ℤ, a + -b + b = a := algebra.neg_add_cancel_right
|
||||
definition neg_eq_of_add_eq_zero : Π{a b : ℤ}, a + b = 0 → -a = b :=
|
||||
@algebra.neg_eq_of_add_eq_zero _ _
|
||||
definition neg_zero : -0 = 0 := algebra.neg_zero
|
||||
definition neg_neg : Πa : ℤ, -(-a) = a := algebra.neg_neg
|
||||
definition neg.inj : Π{a b : ℤ}, -a = -b → a = b := @algebra.neg.inj _ _
|
||||
definition neg_eq_neg_iff_eq : Πa b : ℤ, -a = -b ↔ a = b := algebra.neg_eq_neg_iff_eq
|
||||
definition neg_eq_zero_iff_eq_zero : Πa : ℤ, -a = 0 ↔ a = 0 := algebra.neg_eq_zero_iff_eq_zero
|
||||
definition eq_neg_of_eq_neg : Π{a b : ℤ}, a = -b → b = -a := @algebra.eq_neg_of_eq_neg _ _
|
||||
definition eq_neg_iff_eq_neg : Π{a b : ℤ}, a = -b ↔ b = -a := @algebra.eq_neg_iff_eq_neg _ _
|
||||
definition add.right_inv : Πa : ℤ, a + -a = 0 := algebra.add.right_inv
|
||||
definition add_neg_cancel_left : Πa b : ℤ, a + (-a + b) = b := algebra.add_neg_cancel_left
|
||||
definition add_neg_cancel_right : Πa b : ℤ, a + b + -b = a := algebra.add_neg_cancel_right
|
||||
definition neg_add_rev : Πa b : ℤ, -(a + b) = -b + -a := algebra.neg_add_rev
|
||||
definition eq_add_neg_of_add_eq : Π{a b c : ℤ}, a + c = b → a = b + -c :=
|
||||
@algebra.eq_add_neg_of_add_eq _ _
|
||||
definition eq_neg_add_of_add_eq : Π{a b c : ℤ}, b + a = c → a = -b + c :=
|
||||
@algebra.eq_neg_add_of_add_eq _ _
|
||||
definition neg_add_eq_of_eq_add : Π{a b c : ℤ}, b = a + c → -a + b = c :=
|
||||
@algebra.neg_add_eq_of_eq_add _ _
|
||||
definition add_neg_eq_of_eq_add : Π{a b c : ℤ}, a = c + b → a + -b = c :=
|
||||
@algebra.add_neg_eq_of_eq_add _ _
|
||||
definition eq_add_of_add_neg_eq : Π{a b c : ℤ}, a + -c = b → a = b + c :=
|
||||
@algebra.eq_add_of_add_neg_eq _ _
|
||||
definition eq_add_of_neg_add_eq : Π{a b c : ℤ}, -b + a = c → a = b + c :=
|
||||
@algebra.eq_add_of_neg_add_eq _ _
|
||||
definition add_eq_of_eq_neg_add : Π{a b c : ℤ}, b = -a + c → a + b = c :=
|
||||
@algebra.add_eq_of_eq_neg_add _ _
|
||||
definition add_eq_of_eq_add_neg : Π{a b c : ℤ}, a = c + -b → a + b = c :=
|
||||
@algebra.add_eq_of_eq_add_neg _ _
|
||||
definition add_eq_iff_eq_neg_add : Πa b c : ℤ, a + b = c ↔ b = -a + c :=
|
||||
@algebra.add_eq_iff_eq_neg_add _ _
|
||||
definition add_eq_iff_eq_add_neg : Πa b c : ℤ, a + b = c ↔ a = c + -b :=
|
||||
@algebra.add_eq_iff_eq_add_neg _ _
|
||||
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
||||
infix - := int.sub
|
||||
definition sub_eq_add_neg : Πa b : ℤ, a - b = a + -b := algebra.sub_eq_add_neg
|
||||
definition sub_self : Πa : ℤ, a - a = 0 := algebra.sub_self
|
||||
definition sub_add_cancel : Πa b : ℤ, a - b + b = a := algebra.sub_add_cancel
|
||||
definition add_sub_cancel : Πa b : ℤ, a + b - b = a := algebra.add_sub_cancel
|
||||
definition eq_of_sub_eq_zero : Π{a b : ℤ}, a - b = 0 → a = b := @algebra.eq_of_sub_eq_zero _ _
|
||||
definition eq_iff_sub_eq_zero : Πa b : ℤ, a = b ↔ a - b = 0 := algebra.eq_iff_sub_eq_zero
|
||||
definition zero_sub : Πa : ℤ, 0 - a = -a := algebra.zero_sub
|
||||
definition sub_zero : Πa : ℤ, a - 0 = a := algebra.sub_zero
|
||||
definition sub_neg_eq_add : Πa b : ℤ, a - (-b) = a + b := algebra.sub_neg_eq_add
|
||||
definition neg_sub : Πa b : ℤ, -(a - b) = b - a := algebra.neg_sub
|
||||
definition add_sub : Πa b c : ℤ, a + (b - c) = a + b - c := algebra.add_sub
|
||||
definition sub_add_eq_sub_sub_swap : Πa b c : ℤ, a - (b + c) = a - c - b :=
|
||||
algebra.sub_add_eq_sub_sub_swap
|
||||
definition sub_eq_iff_eq_add : Πa b c : ℤ, a - b = c ↔ a = c + b := algebra.sub_eq_iff_eq_add
|
||||
definition eq_sub_iff_add_eq : Πa b c : ℤ, a = b - c ↔ a + c = b := algebra.eq_sub_iff_add_eq
|
||||
definition eq_iff_eq_of_sub_eq_sub : Π{a b c d : ℤ}, a - b = c - d → (a = b ↔ c = d) :=
|
||||
@algebra.eq_iff_eq_of_sub_eq_sub _ _
|
||||
definition eq_sub_of_add_eq : Π{a b c : ℤ}, a + c = b → a = b - c := @algebra.eq_sub_of_add_eq _ _
|
||||
definition sub_eq_of_eq_add : Π{a b c : ℤ}, a = c + b → a - b = c := @algebra.sub_eq_of_eq_add _ _
|
||||
definition eq_add_of_sub_eq : Π{a b c : ℤ}, a - c = b → a = b + c := @algebra.eq_add_of_sub_eq _ _
|
||||
definition add_eq_of_eq_sub : Π{a b c : ℤ}, a = c - b → a + b = c := @algebra.add_eq_of_eq_sub _ _
|
||||
definition sub_add_eq_sub_sub : Πa b c : ℤ, a - (b + c) = a - b - c := algebra.sub_add_eq_sub_sub
|
||||
definition neg_add_eq_sub : Πa b : ℤ, -a + b = b - a := algebra.neg_add_eq_sub
|
||||
definition neg_add : Πa b : ℤ, -(a + b) = -a + -b := algebra.neg_add
|
||||
definition sub_add_eq_add_sub : Πa b c : ℤ, a - b + c = a + c - b := algebra.sub_add_eq_add_sub
|
||||
definition sub_sub_ : Πa b c : ℤ, a - b - c = a - (b + c) := algebra.sub_sub
|
||||
definition add_sub_add_left_eq_sub : Πa b c : ℤ, (c + a) - (c + b) = a - b :=
|
||||
algebra.add_sub_add_left_eq_sub
|
||||
definition eq_sub_of_add_eq' : Π{a b c : ℤ}, c + a = b → a = b - c := @algebra.eq_sub_of_add_eq' _ _
|
||||
definition sub_eq_of_eq_add' : Π{a b c : ℤ}, a = b + c → a - b = c := @algebra.sub_eq_of_eq_add' _ _
|
||||
definition eq_add_of_sub_eq' : Π{a b c : ℤ}, a - b = c → a = b + c := @algebra.eq_add_of_sub_eq' _ _
|
||||
definition add_eq_of_eq_sub' : Π{a b c : ℤ}, b = c - a → a + b = c := @algebra.add_eq_of_eq_sub' _ _
|
||||
definition ne_zero_of_mul_ne_zero_right : Π{a b : ℤ}, a * b ≠ 0 → a ≠ 0 :=
|
||||
@algebra.ne_zero_of_mul_ne_zero_right _ _
|
||||
definition ne_zero_of_mul_ne_zero_left : Π{a b : ℤ}, a * b ≠ 0 → b ≠ 0 :=
|
||||
@algebra.ne_zero_of_mul_ne_zero_left _ _
|
||||
definition dvd (a b : ℤ) : Type₀ := algebra.dvd a b
|
||||
notation a ∣ b := dvd a b
|
||||
definition dvd.intro : Π{a b c : ℤ} (H : a * c = b), a ∣ b := @algebra.dvd.intro _ _
|
||||
definition dvd.intro_left : Π{a b c : ℤ} (H : c * a = b), a ∣ b := @algebra.dvd.intro_left _ _
|
||||
definition exists_eq_mul_right_of_dvd : Π{a b : ℤ} (H : a ∣ b), Σc, b = a * c :=
|
||||
@algebra.exists_eq_mul_right_of_dvd _ _
|
||||
definition dvd.elim : Π{P : Type} {a b : ℤ} (H₁ : a ∣ b) (H₂ : Πc, b = a * c → P), P :=
|
||||
@algebra.dvd.elim _ _
|
||||
definition exists_eq_mul_left_of_dvd : Π{a b : ℤ} (H : a ∣ b), Σc, b = c * a :=
|
||||
@algebra.exists_eq_mul_left_of_dvd _ _
|
||||
definition dvd.elim_left : Π{P : Type} {a b : ℤ} (H₁ : a ∣ b) (H₂ : Πc, b = c * a → P), P :=
|
||||
@algebra.dvd.elim_left _ _
|
||||
definition dvd.refl : Πa : ℤ, (a ∣ a) := algebra.dvd.refl
|
||||
definition dvd.trans : Π{a b c : ℤ} (H₁ : a ∣ b) (H₂ : b ∣ c), a ∣ c := @algebra.dvd.trans _ _
|
||||
definition eq_zero_of_zero_dvd : Π{a : ℤ} (H : 0 ∣ a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _
|
||||
definition dvd_zero : Πa : ℤ, a ∣ 0 := algebra.dvd_zero
|
||||
definition one_dvd : Πa : ℤ, 1 ∣ a := algebra.one_dvd
|
||||
definition dvd_mul_right : Πa b : ℤ, a ∣ a * b := algebra.dvd_mul_right
|
||||
definition dvd_mul_left : Πa b : ℤ, a ∣ b * a := algebra.dvd_mul_left
|
||||
definition dvd_mul_of_dvd_left : Π{a b : ℤ} (H : a ∣ b) (c : ℤ), a ∣ b * c :=
|
||||
@algebra.dvd_mul_of_dvd_left _ _
|
||||
definition dvd_mul_of_dvd_right : Π{a b : ℤ} (H : a ∣ b) (c : ℤ), a ∣ c * b :=
|
||||
@algebra.dvd_mul_of_dvd_right _ _
|
||||
definition mul_dvd_mul : Π{a b c d : ℤ}, a ∣ b → c ∣ d → a * c ∣ b * d :=
|
||||
@algebra.mul_dvd_mul _ _
|
||||
definition dvd_of_mul_right_dvd : Π{a b c : ℤ}, a * b ∣ c → a ∣ c :=
|
||||
@algebra.dvd_of_mul_right_dvd _ _
|
||||
definition dvd_of_mul_left_dvd : Π{a b c : ℤ}, a * b ∣ c → b ∣ c :=
|
||||
@algebra.dvd_of_mul_left_dvd _ _
|
||||
definition dvd_add : Π{a b c : ℤ}, a ∣ b → a ∣ c → a ∣ b + c := @algebra.dvd_add _ _
|
||||
definition zero_mul : Πa : ℤ, 0 * a = 0 := algebra.zero_mul
|
||||
definition mul_zero : Πa : ℤ, a * 0 = 0 := algebra.mul_zero
|
||||
definition neg_mul_eq_neg_mul : Πa b : ℤ, -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
|
||||
definition neg_mul_eq_mul_neg : Πa b : ℤ, -(a * b) = a * -b := algebra.neg_mul_eq_mul_neg
|
||||
definition neg_mul_neg : Πa b : ℤ, -a * -b = a * b := algebra.neg_mul_neg
|
||||
definition neg_mul_comm : Πa b : ℤ, -a * b = a * -b := algebra.neg_mul_comm
|
||||
definition neg_eq_neg_one_mul : Πa : ℤ, -a = -1 * a := algebra.neg_eq_neg_one_mul
|
||||
definition mul_sub_left_distrib : Πa b c : ℤ, a * (b - c) = a * b - a * c :=
|
||||
algebra.mul_sub_left_distrib
|
||||
definition mul_sub_right_distrib : Πa b c : ℤ, (a - b) * c = a * c - b * c :=
|
||||
algebra.mul_sub_right_distrib
|
||||
definition mul_add_eq_mul_add_iff_sub_mul_add_eq :
|
||||
Πa b c d e : ℤ, a * e + c = b * e + d ↔ (a - b) * e + c = d :=
|
||||
algebra.mul_add_eq_mul_add_iff_sub_mul_add_eq
|
||||
definition mul_self_sub_mul_self_eq : Πa b : ℤ, a * a - b * b = (a + b) * (a - b) :=
|
||||
algebra.mul_self_sub_mul_self_eq
|
||||
definition mul_self_sub_one_eq : Πa : ℤ, a * a - 1 = (a + 1) * (a - 1) :=
|
||||
algebra.mul_self_sub_one_eq
|
||||
definition dvd_neg_iff_dvd : Πa b : ℤ, a ∣ -b ↔ a ∣ b := algebra.dvd_neg_iff_dvd
|
||||
definition neg_dvd_iff_dvd : Πa b : ℤ, -a ∣ b ↔ a ∣ b := algebra.neg_dvd_iff_dvd
|
||||
definition dvd_sub : Πa b c : ℤ, a ∣ b → a ∣ c → a ∣ b - c := algebra.dvd_sub
|
||||
definition mul_ne_zero : Π{a b : ℤ}, a ≠ 0 → b ≠ 0 → a * b ≠ 0 := @algebra.mul_ne_zero _ _
|
||||
definition mul.cancel_right : Π{a b c : ℤ}, a ≠ 0 → b * a = c * a → b = c :=
|
||||
@algebra.mul.cancel_right _ _
|
||||
definition mul.cancel_left : Π{a b c : ℤ}, a ≠ 0 → a * b = a * c → b = c :=
|
||||
@algebra.mul.cancel_left _ _
|
||||
definition mul_self_eq_mul_self_iff : Πa b : ℤ, a * a = b * b ↔ a = b ⊎ a = -b :=
|
||||
algebra.mul_self_eq_mul_self_iff
|
||||
definition mul_self_eq_one_iff : Πa : ℤ, a * a = 1 ↔ a = 1 ⊎ a = -1 :=
|
||||
algebra.mul_self_eq_one_iff
|
||||
definition dvd_of_mul_dvd_mul_left : Π{a b c : ℤ}, a ≠ 0 → a*b ∣ a*c → b ∣ c :=
|
||||
@algebra.dvd_of_mul_dvd_mul_left _ _
|
||||
definition dvd_of_mul_dvd_mul_right : Π{a b c : ℤ}, a ≠ 0 → b*a ∣ c*a → b ∣ c :=
|
||||
@algebra.dvd_of_mul_dvd_mul_right _ _
|
||||
end port_algebra
|
||||
|
||||
/- additional properties -/
|
||||
|
||||
definition of_nat_sub_of_nat {m n : ℕ} (H : #nat m ≥ n) : of_nat m - of_nat n = of_nat (#nat m - n) :=
|
||||
have H1 : m = (#nat m - n + n), from (nat.sub_add_cancel H)⁻¹,
|
||||
have H2 : m = (#nat m - n) + n, from ap of_nat H1,
|
||||
sub_eq_of_eq_add H2
|
||||
|
||||
definition neg_succ_of_nat_eq' (m : ℕ) : -[m +1] = -m - 1 :=
|
||||
by rewrite [neg_succ_of_nat_eq, -of_nat_add_of_nat, neg_add]
|
||||
|
||||
end int
|
|
@ -3,13 +3,13 @@ Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.nat.basic
|
||||
(Ported from standard library file data.nat.basic on May 02, 2015)
|
||||
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
Basic operations on the natural numbers.
|
||||
|
||||
-/
|
||||
import algebra.binary
|
||||
open eq sum sigma prod binary
|
||||
import algebra.ring
|
||||
open core prod binary
|
||||
|
||||
namespace nat
|
||||
|
||||
|
@ -19,7 +19,7 @@ definition addl (x y : ℕ) : ℕ :=
|
|||
nat.rec y (λ n r, succ r) x
|
||||
infix `⊕`:65 := addl
|
||||
|
||||
theorem addl_succ_right (n m : ℕ) : n ⊕ succ m = succ (n ⊕ m) :=
|
||||
definition addl_succ_right (n m : ℕ) : n ⊕ succ m = succ (n ⊕ m) :=
|
||||
nat.rec_on n
|
||||
rfl
|
||||
(λ n₁ ih, calc
|
||||
|
@ -27,7 +27,7 @@ nat.rec_on n
|
|||
... = succ (succ (n₁ ⊕ m)) : ih
|
||||
... = succ (succ n₁ ⊕ m) : rfl)
|
||||
|
||||
theorem add_eq_addl (x : ℕ) : ∀y, x + y = x ⊕ y :=
|
||||
definition add_eq_addl (x : ℕ) : ∀y, x + y = x ⊕ y :=
|
||||
nat.rec_on x
|
||||
(λ y, nat.rec_on y
|
||||
rfl
|
||||
|
@ -47,52 +47,52 @@ nat.rec_on x
|
|||
|
||||
/- successor and predecessor -/
|
||||
|
||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 :=
|
||||
definition succ_ne_zero (n : ℕ) : succ n ≠ 0 :=
|
||||
by contradiction
|
||||
|
||||
-- add_rewrite succ_ne_zero
|
||||
|
||||
theorem pred_zero : pred 0 = 0 :=
|
||||
definition pred_zero : pred 0 = 0 :=
|
||||
rfl
|
||||
|
||||
theorem pred_succ (n : ℕ) : pred (succ n) = n :=
|
||||
definition pred_succ (n : ℕ) : pred (succ n) = n :=
|
||||
rfl
|
||||
|
||||
theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ⊎ n = succ (pred n) :=
|
||||
definition eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ⊎ n = succ (pred n) :=
|
||||
nat.rec_on n
|
||||
(sum.inl rfl)
|
||||
(take m IH, sum.inr
|
||||
(show succ m = succ (pred (succ m)), from ap succ !pred_succ⁻¹))
|
||||
|
||||
theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : Σk : ℕ, n = succ k :=
|
||||
⟨_, sum.rec_on (eq_zero_or_eq_succ_pred n) (λH2, absurd H2 H) function.id⟩
|
||||
definition exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : Σk : ℕ, n = succ k :=
|
||||
sigma.mk _ (sum_resolve_right !eq_zero_or_eq_succ_pred H)
|
||||
|
||||
theorem succ_inj {n m : ℕ} (H : succ n = succ m) : n = m :=
|
||||
definition succ_inj {n m : ℕ} (H : succ n = succ m) : n = m :=
|
||||
lift.down (nat.no_confusion H (λe, e))
|
||||
|
||||
theorem succ_ne_self {n : ℕ} : succ n ≠ n :=
|
||||
definition succ_ne_self {n : ℕ} : succ n ≠ n :=
|
||||
nat.rec_on n
|
||||
(take H : 1 = 0,
|
||||
have ne : 1 ≠ 0, from !succ_ne_zero,
|
||||
absurd H ne)
|
||||
(take k IH H, IH (succ_inj H))
|
||||
|
||||
theorem discriminate {B : Type} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
|
||||
definition discriminate {B : Type} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
|
||||
have H : n = n → B, from nat.cases_on n H1 H2,
|
||||
H rfl
|
||||
|
||||
theorem two_step_induction_on {P : ℕ → Type} (a : ℕ) (H1 : P 0) (H2 : P 1)
|
||||
definition two_step_induction_on {P : ℕ → Type} (a : ℕ) (H1 : P 0) (H2 : P 1)
|
||||
(H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
|
||||
have stronger : P a × P (succ a), from
|
||||
nat.rec_on a
|
||||
(H1, H2)
|
||||
(pair H1 H2)
|
||||
(take k IH,
|
||||
have IH1 : P k, from pr1 IH,
|
||||
have IH2 : P (succ k), from pr2 IH,
|
||||
(IH2, (H3 k IH1 IH2))),
|
||||
pair IH2 (H3 k IH1 IH2)),
|
||||
pr1 stronger
|
||||
|
||||
theorem sub_induction {P : ℕ → ℕ → Type} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||||
definition sub_induction {P : ℕ → ℕ → Type} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||||
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
|
||||
have general : ∀m, P n m, from nat.rec_on n
|
||||
(take m : ℕ, H1 m)
|
||||
|
@ -104,13 +104,13 @@ general m
|
|||
|
||||
/- addition -/
|
||||
|
||||
theorem add_zero (n : ℕ) : n + 0 = n :=
|
||||
definition add_zero (n : ℕ) : n + 0 = n :=
|
||||
rfl
|
||||
|
||||
theorem add_succ (n m : ℕ) : n + succ m = succ (n + m) :=
|
||||
definition add_succ (n m : ℕ) : n + succ m = succ (n + m) :=
|
||||
rfl
|
||||
|
||||
theorem zero_add (n : ℕ) : 0 + n = n :=
|
||||
definition zero_add (n : ℕ) : 0 + n = n :=
|
||||
nat.rec_on n
|
||||
!add_zero
|
||||
(take m IH, show 0 + succ m = succ m, from
|
||||
|
@ -118,7 +118,7 @@ nat.rec_on n
|
|||
0 + succ m = succ (0 + m) : add_succ
|
||||
... = succ m : IH)
|
||||
|
||||
theorem succ_add (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||||
definition succ_add (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||||
nat.rec_on m
|
||||
(!add_zero ▸ !add_zero)
|
||||
(take k IH, calc
|
||||
|
@ -126,7 +126,7 @@ nat.rec_on m
|
|||
... = succ (succ (n + k)) : IH
|
||||
... = succ (n + succ k) : add_succ)
|
||||
|
||||
theorem add.comm (n m : ℕ) : n + m = m + n :=
|
||||
definition add.comm (n m : ℕ) : n + m = m + n :=
|
||||
nat.rec_on m
|
||||
(!add_zero ⬝ !zero_add⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -134,10 +134,10 @@ nat.rec_on m
|
|||
... = succ (k + n) : IH
|
||||
... = succ k + n : succ_add)
|
||||
|
||||
theorem succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m :=
|
||||
definition succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m :=
|
||||
!succ_add ⬝ !add_succ⁻¹
|
||||
|
||||
theorem add.assoc (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||||
definition add.assoc (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||||
nat.rec_on k
|
||||
(!add_zero ▸ !add_zero)
|
||||
(take l IH,
|
||||
|
@ -147,13 +147,13 @@ nat.rec_on k
|
|||
... = n + succ (m + l) : add_succ
|
||||
... = n + (m + succ l) : add_succ)
|
||||
|
||||
theorem add.left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||||
definition add.left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||||
left_comm add.comm add.assoc n m k
|
||||
|
||||
theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m :=
|
||||
definition add.right_comm (n m k : ℕ) : n + m + k = n + k + m :=
|
||||
right_comm add.comm add.assoc n m k
|
||||
|
||||
theorem add.cancel_left {n m k : ℕ} : n + m = n + k → m = k :=
|
||||
definition add.cancel_left {n m k : ℕ} : n + m = n + k → m = k :=
|
||||
nat.rec_on n
|
||||
(take H : 0 + m = 0 + k,
|
||||
!zero_add⁻¹ ⬝ H ⬝ !zero_add)
|
||||
|
@ -166,11 +166,11 @@ nat.rec_on n
|
|||
have H3 : n + m = n + k, from succ_inj H2,
|
||||
IH H3)
|
||||
|
||||
theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
||||
definition add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
||||
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
|
||||
add.cancel_left H2
|
||||
|
||||
theorem eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0 :=
|
||||
definition eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0 :=
|
||||
nat.rec_on n
|
||||
(take (H : 0 + m = 0), rfl)
|
||||
(take k IH,
|
||||
|
@ -181,34 +181,34 @@ nat.rec_on n
|
|||
... = 0 : H)
|
||||
!succ_ne_zero)
|
||||
|
||||
theorem eq_zero_of_add_eq_zero_left {n m : ℕ} (H : n + m = 0) : m = 0 :=
|
||||
definition eq_zero_of_add_eq_zero_left {n m : ℕ} (H : n + m = 0) : m = 0 :=
|
||||
eq_zero_of_add_eq_zero_right (!add.comm ⬝ H)
|
||||
|
||||
theorem eq_zero_and_eq_zero_of_add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 × m = 0 :=
|
||||
(eq_zero_of_add_eq_zero_right H, eq_zero_of_add_eq_zero_left H)
|
||||
definition eq_zero_and_eq_zero_of_add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 × m = 0 :=
|
||||
pair (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H)
|
||||
|
||||
theorem add_one (n : ℕ) : n + 1 = succ n :=
|
||||
definition add_one (n : ℕ) : n + 1 = succ n :=
|
||||
!add_zero ▸ !add_succ
|
||||
|
||||
theorem one_add (n : ℕ) : 1 + n = succ n :=
|
||||
definition one_add (n : ℕ) : 1 + n = succ n :=
|
||||
!zero_add ▸ !succ_add
|
||||
|
||||
/- multiplication -/
|
||||
|
||||
theorem mul_zero (n : ℕ) : n * 0 = 0 :=
|
||||
definition mul_zero (n : ℕ) : n * 0 = 0 :=
|
||||
rfl
|
||||
|
||||
theorem mul_succ (n m : ℕ) : n * succ m = n * m + n :=
|
||||
definition mul_succ (n m : ℕ) : n * succ m = n * m + n :=
|
||||
rfl
|
||||
|
||||
-- commutativity, distributivity, associativity, identity
|
||||
|
||||
theorem zero_mul (n : ℕ) : 0 * n = 0 :=
|
||||
definition zero_mul (n : ℕ) : 0 * n = 0 :=
|
||||
nat.rec_on n
|
||||
!mul_zero
|
||||
(take m IH, !mul_succ ⬝ !add_zero ⬝ IH)
|
||||
|
||||
theorem succ_mul (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||||
definition succ_mul (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||||
nat.rec_on m
|
||||
(!mul_zero ⬝ !mul_zero⁻¹ ⬝ !add_zero⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -220,7 +220,7 @@ nat.rec_on m
|
|||
... = n * k + n + succ k : add.assoc
|
||||
... = n * succ k + succ k : mul_succ)
|
||||
|
||||
theorem mul.comm (n m : ℕ) : n * m = m * n :=
|
||||
definition mul.comm (n m : ℕ) : n * m = m * n :=
|
||||
nat.rec_on m
|
||||
(!mul_zero ⬝ !zero_mul⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -228,7 +228,7 @@ nat.rec_on m
|
|||
... = k * n + n : IH
|
||||
... = (succ k) * n : succ_mul)
|
||||
|
||||
theorem mul.right_distrib (n m k : ℕ) : (n + m) * k = n * k + m * k :=
|
||||
definition mul.right_distrib (n m k : ℕ) : (n + m) * k = n * k + m * k :=
|
||||
nat.rec_on k
|
||||
(calc
|
||||
(n + m) * 0 = 0 : mul_zero
|
||||
|
@ -244,14 +244,14 @@ nat.rec_on k
|
|||
... = n * succ l + (m * l + m) : mul_succ
|
||||
... = n * succ l + m * succ l : mul_succ)
|
||||
|
||||
theorem mul.left_distrib (n m k : ℕ) : n * (m + k) = n * m + n * k :=
|
||||
definition mul.left_distrib (n m k : ℕ) : n * (m + k) = n * m + n * k :=
|
||||
calc
|
||||
n * (m + k) = (m + k) * n : mul.comm
|
||||
... = m * n + k * n : mul.right_distrib
|
||||
... = n * m + k * n : mul.comm
|
||||
... = n * m + n * k : mul.comm
|
||||
|
||||
theorem mul.assoc (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||||
definition mul.assoc (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||||
nat.rec_on k
|
||||
(calc
|
||||
(n * m) * 0 = n * (m * 0) : mul_zero)
|
||||
|
@ -262,18 +262,18 @@ nat.rec_on k
|
|||
... = n * (m * l + m) : mul.left_distrib
|
||||
... = n * (m * succ l) : mul_succ)
|
||||
|
||||
theorem mul_one (n : ℕ) : n * 1 = n :=
|
||||
definition mul_one (n : ℕ) : n * 1 = n :=
|
||||
calc
|
||||
n * 1 = n * 0 + n : mul_succ
|
||||
... = 0 + n : mul_zero
|
||||
... = n : zero_add
|
||||
|
||||
theorem one_mul (n : ℕ) : 1 * n = n :=
|
||||
definition one_mul (n : ℕ) : 1 * n = n :=
|
||||
calc
|
||||
1 * n = n * 1 : mul.comm
|
||||
... = n : mul_one
|
||||
|
||||
theorem eq_zero_or_eq_zero_of_mul_eq_zero {n m : ℕ} : n * m = 0 → n = 0 ⊎ m = 0 :=
|
||||
definition eq_zero_or_eq_zero_of_mul_eq_zero {n m : ℕ} : n * m = 0 → n = 0 ⊎ m = 0 :=
|
||||
nat.cases_on n
|
||||
(assume H, sum.inl rfl)
|
||||
(take n',
|
||||
|
@ -288,4 +288,66 @@ nat.cases_on n
|
|||
... = succ (succ n' * m' + n') : add_succ)⁻¹)
|
||||
!succ_ne_zero))
|
||||
|
||||
section
|
||||
open [classes] algebra
|
||||
|
||||
protected definition comm_semiring [instance] [reducible] : algebra.comm_semiring nat :=
|
||||
⦃algebra.comm_semiring,
|
||||
add := add,
|
||||
add_assoc := add.assoc,
|
||||
zero := zero,
|
||||
zero_add := zero_add,
|
||||
add_zero := add_zero,
|
||||
add_comm := add.comm,
|
||||
mul := mul,
|
||||
mul_assoc := mul.assoc,
|
||||
one := succ zero,
|
||||
one_mul := one_mul,
|
||||
mul_one := mul_one,
|
||||
left_distrib := mul.left_distrib,
|
||||
right_distrib := mul.right_distrib,
|
||||
zero_mul := zero_mul,
|
||||
mul_zero := mul_zero,
|
||||
mul_comm := mul.comm,
|
||||
is_hset_carrier := is_hset_of_decidable_eq⦄
|
||||
end
|
||||
|
||||
section port_algebra
|
||||
open [classes] algebra
|
||||
definition mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
||||
definition mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
||||
|
||||
definition dvd (a b : ℕ) : Type₀ := algebra.dvd a b
|
||||
notation a ∣ b := dvd a b
|
||||
|
||||
definition dvd.intro : ∀{a b c : ℕ} (H : a * c = b), a ∣ b := @algebra.dvd.intro _ _
|
||||
definition dvd.intro_left : ∀{a b c : ℕ} (H : c * a = b), a ∣ b := @algebra.dvd.intro_left _ _
|
||||
definition exists_eq_mul_right_of_dvd : ∀{a b : ℕ} (H : a ∣ b), Σc, b = a * c :=
|
||||
@algebra.exists_eq_mul_right_of_dvd _ _
|
||||
definition dvd.elim : ∀{P : Type} {a b : ℕ} (H₁ : a ∣ b) (H₂ : ∀c, b = a * c → P), P :=
|
||||
@algebra.dvd.elim _ _
|
||||
definition exists_eq_mul_left_of_dvd : ∀{a b : ℕ} (H : a ∣ b), Σc, b = c * a :=
|
||||
@algebra.exists_eq_mul_left_of_dvd _ _
|
||||
definition dvd.elim_left : ∀{P : Type} {a b : ℕ} (H₁ : a ∣ b) (H₂ : ∀c, b = c * a → P), P :=
|
||||
@algebra.dvd.elim_left _ _
|
||||
definition dvd.refl : ∀a : ℕ, a ∣ a := algebra.dvd.refl
|
||||
definition dvd.trans : ∀{a b c : ℕ}, a ∣ b → b ∣ c → a ∣ c := @algebra.dvd.trans _ _
|
||||
definition eq_zero_of_zero_dvd : ∀{a : ℕ}, 0 ∣ a → a = 0 := @algebra.eq_zero_of_zero_dvd _ _
|
||||
definition dvd_zero : ∀a : ℕ, a ∣ 0 := algebra.dvd_zero
|
||||
definition one_dvd : ∀a : ℕ, 1 ∣ a := algebra.one_dvd
|
||||
definition dvd_mul_right : ∀a b : ℕ, a ∣ a * b := algebra.dvd_mul_right
|
||||
definition dvd_mul_left : ∀a b : ℕ, a ∣ b * a := algebra.dvd_mul_left
|
||||
definition dvd_mul_of_dvd_left : ∀{a b : ℕ} (H : a ∣ b) (c : ℕ), a ∣ b * c :=
|
||||
@algebra.dvd_mul_of_dvd_left _ _
|
||||
definition dvd_mul_of_dvd_right : ∀{a b : ℕ} (H : a ∣ b) (c : ℕ), a ∣ c * b :=
|
||||
@algebra.dvd_mul_of_dvd_right _ _
|
||||
definition mul_dvd_mul : ∀{a b c d : ℕ}, a ∣ b → c ∣ d → a * c ∣ b * d :=
|
||||
@algebra.mul_dvd_mul _ _
|
||||
definition dvd_of_mul_right_dvd : ∀{a b c : ℕ}, a * b ∣ c → a ∣ c :=
|
||||
@algebra.dvd_of_mul_right_dvd _ _
|
||||
definition dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b ∣ c → b ∣ c :=
|
||||
@algebra.dvd_of_mul_left_dvd _ _
|
||||
definition dvd_add : ∀{a b c : ℕ}, a ∣ b → a ∣ c → a ∣ b + c := @algebra.dvd_add _ _
|
||||
end port_algebra
|
||||
|
||||
end nat
|
||||
|
|
9
hott/types/nat/default.hlean
Normal file
9
hott/types/nat/default.hlean
Normal file
|
@ -0,0 +1,9 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.nat.default
|
||||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import .basic .order .sub
|
425
hott/types/nat/order.hlean
Normal file
425
hott/types/nat/order.hlean
Normal file
|
@ -0,0 +1,425 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.nat.order
|
||||
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
The order relation on the natural numbers.
|
||||
|
||||
Ported from standard library
|
||||
-/
|
||||
|
||||
import .basic algebra.ordered_ring
|
||||
open core prod decidable
|
||||
|
||||
namespace nat
|
||||
|
||||
/- lt and le -/
|
||||
|
||||
definition le_of_lt_or_eq {m n : ℕ} (H : m < n ⊎ m = n) : m ≤ n :=
|
||||
sum.rec_on H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl)
|
||||
|
||||
definition lt.by_cases {a b : ℕ} {P : Type}
|
||||
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
|
||||
sum.rec_on !lt.trichotomy
|
||||
(assume H, H1 H)
|
||||
(assume H, sum.rec_on H (assume H', H2 H') (assume H', H3 H'))
|
||||
|
||||
definition lt_or_eq_of_le {m n : ℕ} (H : m ≤ n) : m < n ⊎ m = n :=
|
||||
lt.by_cases
|
||||
(assume H1 : m < n, sum.inl H1)
|
||||
(assume H1 : m = n, sum.inr H1)
|
||||
(assume H1 : m > n, absurd (lt_of_le_of_lt H H1) !lt.irrefl)
|
||||
|
||||
definition le_iff_lt_or_eq (m n : ℕ) : m ≤ n ↔ m < n ⊎ m = n :=
|
||||
iff.intro lt_or_eq_of_le le_of_lt_or_eq
|
||||
|
||||
definition lt_of_le_and_ne {m n : ℕ} (H1 : m ≤ n) (H2 : m ≠ n) : m < n :=
|
||||
sum.rec_on (lt_or_eq_of_le H1)
|
||||
(take H3 : m < n, H3)
|
||||
(take H3 : m = n, absurd H3 H2)
|
||||
|
||||
definition lt_iff_le_and_ne (m n : ℕ) : m < n ↔ m ≤ n × m ≠ n :=
|
||||
iff.intro
|
||||
(take H, pair (le_of_lt H) (take H1, lt.irrefl _ (H1 ▸ H)))
|
||||
(take H, lt_of_le_and_ne (pr1 H) (pr2 H))
|
||||
|
||||
definition le_add_right (n k : ℕ) : n ≤ n + k :=
|
||||
nat.rec_on k
|
||||
(calc n ≤ n : le.refl n
|
||||
... = n + zero : add_zero)
|
||||
(λ k (ih : n ≤ n + k), calc
|
||||
n ≤ succ (n + k) : le_succ_of_le ih
|
||||
... = n + succ k : add_succ)
|
||||
|
||||
definition le_add_left (n m : ℕ): n ≤ m + n :=
|
||||
!add.comm ▸ !le_add_right
|
||||
|
||||
definition le.intro {n m k : ℕ} (h : n + k = m) : n ≤ m :=
|
||||
h ▸ le_add_right n k
|
||||
|
||||
definition le.elim {n m : ℕ} (h : n ≤ m) : Σk, n + k = m :=
|
||||
le.rec_on h
|
||||
(sigma.mk 0 rfl)
|
||||
(λ m (h : n < m), lt.rec_on h
|
||||
(sigma.mk 1 rfl)
|
||||
(λ b hlt (ih : Σ (k : ℕ), n + k = b),
|
||||
sigma.rec_on ih (λ(k : ℕ) (h : n + k = b),
|
||||
sigma.mk (succ k) (calc
|
||||
n + succ k = succ (n + k) : add_succ
|
||||
... = succ b : h))))
|
||||
|
||||
definition le.total {m n : ℕ} : m ≤ n ⊎ n ≤ m :=
|
||||
lt.by_cases
|
||||
(assume H : m < n, sum.inl (le_of_lt H))
|
||||
(assume H : m = n, sum.inl (H ▸ !le.refl))
|
||||
(assume H : m > n, sum.inr (le_of_lt H))
|
||||
|
||||
/- addition -/
|
||||
|
||||
definition add_le_add_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
|
||||
sigma.rec_on (le.elim H) (λ(l : ℕ) (Hl : n + l = m),
|
||||
le.intro
|
||||
(calc
|
||||
k + n + l = k + (n + l) : !add.assoc
|
||||
... = k + m : {Hl}))
|
||||
|
||||
definition add_le_add_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k :=
|
||||
!add.comm ▸ !add.comm ▸ add_le_add_left H k
|
||||
|
||||
definition le_of_add_le_add_left {k n m : ℕ} (H : k + n ≤ k + m) : n ≤ m :=
|
||||
sigma.rec_on (le.elim H) (λ(l : ℕ) (Hl : k + n + l = k + m),
|
||||
le.intro (add.cancel_left
|
||||
(calc
|
||||
k + (n + l) = k + n + l : (!add.assoc)⁻¹
|
||||
... = k + m : Hl)))
|
||||
|
||||
definition add_lt_add_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m :=
|
||||
lt_of_succ_le (!add_succ ▸ add_le_add_left (succ_le_of_lt H) k)
|
||||
|
||||
definition add_lt_add_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k :=
|
||||
!add.comm ▸ !add.comm ▸ add_lt_add_left H k
|
||||
|
||||
definition lt_add_of_pos_right {n k : ℕ} (H : k > 0) : n < n + k :=
|
||||
!add_zero ▸ add_lt_add_left H n
|
||||
|
||||
/- multiplication -/
|
||||
|
||||
definition mul_le_mul_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m :=
|
||||
sigma.rec_on (le.elim H) (λ(l : ℕ) (Hl : n + l = m),
|
||||
have H2 : k * n + k * l = k * m, by rewrite [-mul.left_distrib, Hl],
|
||||
le.intro H2)
|
||||
|
||||
definition mul_le_mul_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k :=
|
||||
!mul.comm ▸ !mul.comm ▸ (mul_le_mul_left H k)
|
||||
|
||||
definition mul_le_mul {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l :=
|
||||
le.trans (mul_le_mul_right H1 m) (mul_le_mul_left H2 k)
|
||||
|
||||
definition mul_lt_mul_of_pos_left {n m k : ℕ} (H : n < m) (Hk : k > 0) : k * n < k * m :=
|
||||
have H2 : k * n < k * n + k, from lt_add_of_pos_right Hk,
|
||||
have H3 : k * n + k ≤ k * m, from !mul_succ ▸ mul_le_mul_left (succ_le_of_lt H) k,
|
||||
lt_of_lt_of_le H2 H3
|
||||
|
||||
definition mul_lt_mul_of_pos_right {n m k : ℕ} (H : n < m) (Hk : k > 0) : n * k < m * k :=
|
||||
!mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk
|
||||
|
||||
definition le.antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
|
||||
sigma.rec_on (le.elim H1) (λ(k : ℕ) (Hk : n + k = m),
|
||||
sigma.rec_on (le.elim H2) (λ(l : ℕ) (Hl : m + l = n),
|
||||
have L1 : k + l = 0, from
|
||||
add.cancel_left
|
||||
(calc
|
||||
n + (k + l) = n + k + l : (!add.assoc)⁻¹
|
||||
... = m + l : {Hk}
|
||||
... = n : Hl
|
||||
... = n + 0 : (!add_zero)⁻¹),
|
||||
have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1,
|
||||
calc
|
||||
n = n + 0 : (!add_zero)⁻¹
|
||||
... = n + k : {L2⁻¹}
|
||||
... = m : Hk))
|
||||
|
||||
definition zero_le (n : ℕ) : 0 ≤ n :=
|
||||
le.intro !zero_add
|
||||
|
||||
/- nat is an instance of a linearly ordered semiring -/
|
||||
|
||||
section
|
||||
open [classes] algebra
|
||||
|
||||
protected definition linear_ordered_semiring [instance] [reducible] :
|
||||
algebra.linear_ordered_semiring nat :=
|
||||
⦃ algebra.linear_ordered_semiring, nat.comm_semiring,
|
||||
add_left_cancel := @add.cancel_left,
|
||||
add_right_cancel := @add.cancel_right,
|
||||
lt := lt,
|
||||
le := le,
|
||||
le_refl := le.refl,
|
||||
le_trans := @le.trans,
|
||||
le_antisymm := @le.antisymm,
|
||||
le_total := @le.total,
|
||||
le_iff_lt_or_eq := @le_iff_lt_or_eq,
|
||||
lt_iff_le_and_ne := lt_iff_le_and_ne,
|
||||
add_le_add_left := @add_le_add_left,
|
||||
le_of_add_le_add_left := @le_of_add_le_add_left,
|
||||
zero_ne_one := ne.symm (succ_ne_zero zero),
|
||||
mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left H1 c),
|
||||
mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right H1 c),
|
||||
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
|
||||
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right ⦄
|
||||
|
||||
migrate from algebra with nat
|
||||
replacing has_le.ge → ge, has_lt.gt → gt
|
||||
hiding pos_of_mul_pos_left, pos_of_mul_pos_right, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right
|
||||
end
|
||||
|
||||
section port_algebra
|
||||
open [classes] algebra
|
||||
definition add_pos_left : Π{a : ℕ}, 0 < a → Πb : ℕ, 0 < a + b :=
|
||||
take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
|
||||
definition add_pos_right : Π{a : ℕ}, 0 < a → Πb : ℕ, 0 < b + a :=
|
||||
take a H b, !add.comm ▸ add_pos_left H b
|
||||
definition add_eq_zero_iff_eq_zero_and_eq_zero : Π{a b : ℕ},
|
||||
a + b = 0 ↔ a = 0 × b = 0 :=
|
||||
take a b : ℕ,
|
||||
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
|
||||
definition le_add_of_le_left : Π{a b c : ℕ}, b ≤ c → b ≤ a + c :=
|
||||
take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
|
||||
definition le_add_of_le_right : Π{a b c : ℕ}, b ≤ c → b ≤ c + a :=
|
||||
take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
|
||||
definition lt_add_of_lt_left : Π{b c : ℕ}, b < c → Πa, b < a + c :=
|
||||
take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
|
||||
definition lt_add_of_lt_right : Π{b c : ℕ}, b < c → Πa, b < c + a :=
|
||||
take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
|
||||
definition lt_of_mul_lt_mul_left : Π{a b c : ℕ}, c * a < c * b → a < b :=
|
||||
take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
|
||||
definition lt_of_mul_lt_mul_right : Π{a b c : ℕ}, a * c < b * c → a < b :=
|
||||
take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
|
||||
definition pos_of_mul_pos_left : Π{a b : ℕ}, 0 < a * b → 0 < b :=
|
||||
take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le
|
||||
definition pos_of_mul_pos_right : Π{a b : ℕ}, 0 < a * b → 0 < a :=
|
||||
take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le
|
||||
end port_algebra
|
||||
|
||||
definition zero_le_one : 0 ≤ 1 := dec_trivial
|
||||
definition zero_lt_one : 0 < 1 := dec_trivial
|
||||
|
||||
/- properties specific to nat -/
|
||||
|
||||
definition lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m :=
|
||||
lt_of_succ_le (le.intro H)
|
||||
|
||||
definition lt_elim {n m : ℕ} (H : n < m) : Σk, succ n + k = m :=
|
||||
le.elim (succ_le_of_lt H)
|
||||
|
||||
definition lt_add_succ (n m : ℕ) : n < n + succ m :=
|
||||
lt_intro !succ_add_eq_succ_add
|
||||
|
||||
definition eq_zero_of_le_zero {n : ℕ} (H : n ≤ 0) : n = 0 :=
|
||||
obtain (k : ℕ) (Hk : n + k = 0), from le.elim H,
|
||||
eq_zero_of_add_eq_zero_right Hk
|
||||
|
||||
/- succ and pred -/
|
||||
|
||||
definition lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
|
||||
iff.intro succ_le_of_lt lt_of_succ_le
|
||||
|
||||
definition not_succ_le_zero (n : ℕ) : ¬ succ n ≤ 0 :=
|
||||
(assume H : succ n ≤ 0,
|
||||
have H2 : succ n = 0, from eq_zero_of_le_zero H,
|
||||
absurd H2 !succ_ne_zero)
|
||||
|
||||
definition succ_le_succ {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m :=
|
||||
!add_one ▸ !add_one ▸ add_le_add_right H 1
|
||||
|
||||
definition le_of_succ_le_succ {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m :=
|
||||
le_of_add_le_add_right ((!add_one)⁻¹ ▸ (!add_one)⁻¹ ▸ H)
|
||||
|
||||
definition self_le_succ (n : ℕ) : n ≤ succ n :=
|
||||
le.intro !add_one
|
||||
|
||||
definition succ_le_or_eq_of_le {n m : ℕ} (H : n ≤ m) : succ n ≤ m ⊎ n = m :=
|
||||
sum.rec_on (lt_or_eq_of_le H)
|
||||
(assume H1 : n < m, sum.inl (succ_le_of_lt H1))
|
||||
(assume H1 : n = m, sum.inr H1)
|
||||
|
||||
definition le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m :=
|
||||
nat.cases_on n
|
||||
(assume H : pred 0 ≤ m, !zero_le)
|
||||
(take n',
|
||||
assume H : pred (succ n') ≤ m,
|
||||
have H1 : n' ≤ m, from pred_succ n' ▸ H,
|
||||
succ_le_succ H1)
|
||||
|
||||
definition pred_le_of_le_succ {n m : ℕ} : n ≤ succ m → pred n ≤ m :=
|
||||
nat.cases_on n
|
||||
(assume H, !pred_zero⁻¹ ▸ zero_le m)
|
||||
(take n',
|
||||
assume H : succ n' ≤ succ m,
|
||||
have H1 : n' ≤ m, from le_of_succ_le_succ H,
|
||||
!pred_succ⁻¹ ▸ H1)
|
||||
|
||||
definition succ_le_of_le_pred {n m : ℕ} : succ n ≤ m → n ≤ pred m :=
|
||||
nat.cases_on m
|
||||
(assume H, absurd H !not_succ_le_zero)
|
||||
(take m',
|
||||
assume H : succ n ≤ succ m',
|
||||
have H1 : n ≤ m', from le_of_succ_le_succ H,
|
||||
!pred_succ⁻¹ ▸ H1)
|
||||
|
||||
definition pred_le_pred_of_le {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||||
nat.cases_on n
|
||||
(assume H, pred_zero⁻¹ ▸ zero_le (pred m))
|
||||
(take n',
|
||||
assume H : succ n' ≤ m,
|
||||
!pred_succ⁻¹ ▸ succ_le_of_le_pred H)
|
||||
|
||||
definition lt_of_pred_lt_pred {n m : ℕ} (H : pred n < pred m) : n < m :=
|
||||
lt_of_not_le
|
||||
(take H1 : m ≤ n,
|
||||
not_lt_of_le (pred_le_pred_of_le H1) H)
|
||||
|
||||
definition le_or_eq_succ_of_le_succ {n m : ℕ} (H : n ≤ succ m) : n ≤ m ⊎ n = succ m :=
|
||||
sum_of_sum_of_imp_left (succ_le_or_eq_of_le H)
|
||||
(take H2 : succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ H2)
|
||||
|
||||
definition le_pred_self (n : ℕ) : pred n ≤ n :=
|
||||
nat.cases_on n
|
||||
(pred_zero⁻¹ ▸ !le.refl)
|
||||
(take k : ℕ, (!pred_succ)⁻¹ ▸ !self_le_succ)
|
||||
|
||||
definition succ_pos (n : ℕ) : 0 < succ n :=
|
||||
!zero_lt_succ
|
||||
|
||||
definition succ_pred_of_pos {n : ℕ} (H : n > 0) : succ (pred n) = n :=
|
||||
(sum_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
|
||||
|
||||
definition exists_eq_succ_of_lt {n m : ℕ} (H : n < m) : Σk, m = succ k :=
|
||||
discriminate
|
||||
(take (Hm : m = 0), absurd (Hm ▸ H) !not_lt_zero)
|
||||
(take (l : ℕ) (Hm : m = succ l), sigma.mk l Hm)
|
||||
|
||||
definition lt_succ_self (n : ℕ) : n < succ n :=
|
||||
lt.base n
|
||||
|
||||
definition le_of_lt_succ {n m : ℕ} (H : n < succ m) : n ≤ m :=
|
||||
le_of_succ_le_succ (succ_le_of_lt H)
|
||||
|
||||
/- other forms of rec -/
|
||||
|
||||
protected definition strong_induction_on {P : nat → Type} (n : ℕ) (H : Πn, (Πm, m < n → P m) → P n) :
|
||||
P n :=
|
||||
have H1 : Π {n m : nat}, m < n → P m, from
|
||||
take n,
|
||||
nat.rec_on n
|
||||
(show Πm, m < 0 → P m, from take m H, absurd H !not_lt_zero)
|
||||
(take n',
|
||||
assume IH : Π {m : nat}, m < n' → P m,
|
||||
have H2: P n', from H n' @IH,
|
||||
show Πm, m < succ n' → P m, from
|
||||
take m,
|
||||
assume H3 : m < succ n',
|
||||
sum.rec_on (lt_or_eq_of_le (le_of_lt_succ H3))
|
||||
(assume H4: m < n', IH H4)
|
||||
(assume H4: m = n', H4⁻¹ ▸ H2)),
|
||||
H1 !lt_succ_self
|
||||
|
||||
protected definition case_strong_induction_on {P : nat → Type} (a : nat) (H0 : P 0)
|
||||
(Hind : Π(n : nat), (Πm, m ≤ n → P m) → P (succ n)) : P a :=
|
||||
strong_induction_on a (
|
||||
take n,
|
||||
show (Πm, m < n → P m) → P n, from
|
||||
nat.cases_on n
|
||||
(assume H : (Πm, m < 0 → P m), show P 0, from H0)
|
||||
(take n,
|
||||
assume H : (Πm, m < succ n → P m),
|
||||
show P (succ n), from
|
||||
Hind n (take m, assume H1 : m ≤ n, H _ (lt_succ_of_le H1))))
|
||||
|
||||
/- pos -/
|
||||
|
||||
definition by_cases_zero_pos {P : ℕ → Type} (y : ℕ) (H0 : P 0) (H1 : Π {y : nat}, y > 0 → P y) : P y :=
|
||||
nat.cases_on y H0 (take y, H1 !succ_pos)
|
||||
|
||||
definition eq_zero_or_pos (n : ℕ) : n = 0 ⊎ n > 0 :=
|
||||
sum_of_sum_of_imp_left
|
||||
(sum.swap (lt_or_eq_of_le !zero_le))
|
||||
(take H : 0 = n, H⁻¹)
|
||||
|
||||
definition pos_of_ne_zero {n : ℕ} (H : n ≠ 0) : n > 0 :=
|
||||
sum.rec_on !eq_zero_or_pos (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
|
||||
|
||||
definition ne_zero_of_pos {n : ℕ} (H : n > 0) : n ≠ 0 :=
|
||||
ne.symm (ne_of_lt H)
|
||||
|
||||
definition exists_eq_succ_of_pos {n : ℕ} (H : n > 0) : Σl, n = succ l :=
|
||||
exists_eq_succ_of_lt H
|
||||
|
||||
definition pos_of_dvd_of_pos {m n : ℕ} (H1 : m ∣ n) (H2 : n > 0) : m > 0 :=
|
||||
pos_of_ne_zero
|
||||
(assume H3 : m = 0,
|
||||
have H4 : n = 0, from eq_zero_of_zero_dvd (H3 ▸ H1),
|
||||
ne_of_lt H2 H4⁻¹)
|
||||
|
||||
/- multiplication -/
|
||||
|
||||
definition mul_lt_mul_of_le_of_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) :
|
||||
n * m < k * l :=
|
||||
lt_of_le_of_lt (mul_le_mul_right H1 m) (mul_lt_mul_of_pos_left H2 Hk)
|
||||
|
||||
definition mul_lt_mul_of_lt_of_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) :
|
||||
n * m < k * l :=
|
||||
lt_of_le_of_lt (mul_le_mul_left H2 n) (mul_lt_mul_of_pos_right H1 Hl)
|
||||
|
||||
definition mul_lt_mul_of_le_of_le {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l :=
|
||||
have H3 : n * m ≤ k * m, from mul_le_mul_right (le_of_lt H1) m,
|
||||
have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1),
|
||||
lt_of_le_of_lt H3 H4
|
||||
|
||||
definition eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k :=
|
||||
have H2 : n * m ≤ n * k, from H ▸ !le.refl,
|
||||
have H3 : n * k ≤ n * m, from H ▸ !le.refl,
|
||||
have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn,
|
||||
have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn,
|
||||
le.antisymm H4 H5
|
||||
|
||||
definition eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k :=
|
||||
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
|
||||
|
||||
definition eq_zero_or_eq_of_mul_eq_mul_left {n m k : ℕ} (H : n * m = n * k) : n = 0 ⊎ m = k :=
|
||||
sum_of_sum_of_imp_right !eq_zero_or_pos
|
||||
(assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H)
|
||||
|
||||
definition eq_zero_or_eq_of_mul_eq_mul_right {n m k : ℕ} (H : n * m = k * m) : m = 0 ⊎ n = k :=
|
||||
eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
|
||||
|
||||
definition eq_one_of_mul_eq_one_right {n m : ℕ} (H : n * m = 1) : n = 1 :=
|
||||
have H2 : n * m > 0, from H⁻¹ ▸ !succ_pos,
|
||||
have H3 : n > 0, from pos_of_mul_pos_right H2,
|
||||
have H4 : m > 0, from pos_of_mul_pos_left H2,
|
||||
sum.rec_on (le_or_gt n 1)
|
||||
(assume H5 : n ≤ 1,
|
||||
show n = 1, from le.antisymm H5 (succ_le_of_lt H3))
|
||||
(assume H5 : n > 1,
|
||||
have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4),
|
||||
have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6,
|
||||
absurd !lt_succ_self (not_lt_of_le H7))
|
||||
|
||||
definition eq_one_of_mul_eq_one_left {n m : ℕ} (H : n * m = 1) : m = 1 :=
|
||||
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
|
||||
|
||||
definition eq_one_of_mul_eq_self_left {n m : ℕ} (Hpos : n > 0) (H : m * n = n) : m = 1 :=
|
||||
eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹)
|
||||
|
||||
definition eq_one_of_mul_eq_self_right {n m : ℕ} (Hpos : m > 0) (H : m * n = m) : n = 1 :=
|
||||
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
|
||||
|
||||
definition eq_one_of_dvd_one {n : ℕ} (H : n ∣ 1) : n = 1 :=
|
||||
dvd.elim H
|
||||
(take m,
|
||||
assume H1 : 1 = n * m,
|
||||
eq_one_of_mul_eq_one_right H1⁻¹)
|
||||
|
||||
end nat
|
465
hott/types/nat/sub.hlean
Normal file
465
hott/types/nat/sub.hlean
Normal file
|
@ -0,0 +1,465 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Floris van Doorn, Jeremy Avigad
|
||||
Module: data.nat.sub
|
||||
|
||||
Subtraction on the natural numbers, as well as min, max, and distance.
|
||||
|
||||
Ported from standard library
|
||||
-/
|
||||
import .order
|
||||
|
||||
open core
|
||||
|
||||
|
||||
namespace nat
|
||||
|
||||
/- subtraction -/
|
||||
|
||||
definition sub_zero (n : ℕ) : n - 0 = n :=
|
||||
rfl
|
||||
|
||||
definition sub_succ (n m : ℕ) : n - succ m = pred (n - m) :=
|
||||
rfl
|
||||
|
||||
definition zero_sub (n : ℕ) : 0 - n = 0 :=
|
||||
nat.rec_on n !sub_zero
|
||||
(take k : nat,
|
||||
assume IH : 0 - k = 0,
|
||||
calc
|
||||
0 - succ k = pred (0 - k) : sub_succ
|
||||
... = pred 0 : IH
|
||||
... = 0 : pred_zero)
|
||||
|
||||
definition succ_sub_succ (n m : ℕ) : succ n - succ m = n - m :=
|
||||
succ_sub_succ_eq_sub n m
|
||||
|
||||
definition sub_self (n : ℕ) : n - n = 0 :=
|
||||
nat.rec_on n !sub_zero (take k IH, !succ_sub_succ ⬝ IH)
|
||||
|
||||
definition add_sub_add_right (n k m : ℕ) : (n + k) - (m + k) = n - m :=
|
||||
nat.rec_on k
|
||||
(calc
|
||||
(n + 0) - (m + 0) = n - (m + 0) : {!add_zero}
|
||||
... = n - m : {!add_zero})
|
||||
(take l : nat,
|
||||
assume IH : (n + l) - (m + l) = n - m,
|
||||
calc
|
||||
(n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {!add_succ}
|
||||
... = succ (n + l) - succ (m + l) : {!add_succ}
|
||||
... = (n + l) - (m + l) : !succ_sub_succ
|
||||
... = n - m : IH)
|
||||
|
||||
definition add_sub_add_left (k n m : ℕ) : (k + n) - (k + m) = n - m :=
|
||||
!add.comm ▸ !add.comm ▸ !add_sub_add_right
|
||||
|
||||
definition add_sub_cancel (n m : ℕ) : n + m - m = n :=
|
||||
nat.rec_on m
|
||||
(!add_zero⁻¹ ▸ !sub_zero)
|
||||
(take k : ℕ,
|
||||
assume IH : n + k - k = n,
|
||||
calc
|
||||
n + succ k - succ k = succ (n + k) - succ k : add_succ
|
||||
... = n + k - k : succ_sub_succ
|
||||
... = n : IH)
|
||||
|
||||
definition add_sub_cancel_left (n m : ℕ) : n + m - n = m :=
|
||||
!add.comm ▸ !add_sub_cancel
|
||||
|
||||
definition sub_sub (n m k : ℕ) : n - m - k = n - (m + k) :=
|
||||
nat.rec_on k
|
||||
(calc
|
||||
n - m - 0 = n - m : sub_zero
|
||||
... = n - (m + 0) : add_zero)
|
||||
(take l : nat,
|
||||
assume IH : n - m - l = n - (m + l),
|
||||
calc
|
||||
n - m - succ l = pred (n - m - l) : !sub_succ
|
||||
... = pred (n - (m + l)) : IH
|
||||
... = n - succ (m + l) : sub_succ
|
||||
... = n - (m + succ l) : {!add_succ⁻¹})
|
||||
|
||||
definition succ_sub_sub_succ (n m k : ℕ) : succ n - m - succ k = n - m - k :=
|
||||
calc
|
||||
succ n - m - succ k = succ n - (m + succ k) : sub_sub
|
||||
... = succ n - succ (m + k) : add_succ
|
||||
... = n - (m + k) : succ_sub_succ
|
||||
... = n - m - k : sub_sub
|
||||
|
||||
definition sub_self_add (n m : ℕ) : n - (n + m) = 0 :=
|
||||
calc
|
||||
n - (n + m) = n - n - m : sub_sub
|
||||
... = 0 - m : sub_self
|
||||
... = 0 : zero_sub
|
||||
|
||||
definition sub.right_comm (m n k : ℕ) : m - n - k = m - k - n :=
|
||||
calc
|
||||
m - n - k = m - (n + k) : !sub_sub
|
||||
... = m - (k + n) : {!add.comm}
|
||||
... = m - k - n : !sub_sub⁻¹
|
||||
|
||||
definition sub_one (n : ℕ) : n - 1 = pred n :=
|
||||
rfl
|
||||
|
||||
definition succ_sub_one (n : ℕ) : succ n - 1 = n :=
|
||||
rfl
|
||||
|
||||
/- interaction with multiplication -/
|
||||
|
||||
definition mul_pred_left (n m : ℕ) : pred n * m = n * m - m :=
|
||||
nat.rec_on n
|
||||
(calc
|
||||
pred 0 * m = 0 * m : pred_zero
|
||||
... = 0 : zero_mul
|
||||
... = 0 - m : zero_sub
|
||||
... = 0 * m - m : zero_mul)
|
||||
(take k : nat,
|
||||
assume IH : pred k * m = k * m - m,
|
||||
calc
|
||||
pred (succ k) * m = k * m : pred_succ
|
||||
... = k * m + m - m : add_sub_cancel
|
||||
... = succ k * m - m : succ_mul)
|
||||
|
||||
definition mul_pred_right (n m : ℕ) : n * pred m = n * m - n :=
|
||||
calc
|
||||
n * pred m = pred m * n : mul.comm
|
||||
... = m * n - n : mul_pred_left
|
||||
... = n * m - n : mul.comm
|
||||
|
||||
definition mul_sub_right_distrib (n m k : ℕ) : (n - m) * k = n * k - m * k :=
|
||||
nat.rec_on m
|
||||
(calc
|
||||
(n - 0) * k = n * k : sub_zero
|
||||
... = n * k - 0 : sub_zero
|
||||
... = n * k - 0 * k : zero_mul)
|
||||
(take l : nat,
|
||||
assume IH : (n - l) * k = n * k - l * k,
|
||||
calc
|
||||
(n - succ l) * k = pred (n - l) * k : sub_succ
|
||||
... = (n - l) * k - k : mul_pred_left
|
||||
... = n * k - l * k - k : IH
|
||||
... = n * k - (l * k + k) : sub_sub
|
||||
... = n * k - (succ l * k) : succ_mul)
|
||||
|
||||
definition mul_sub_left_distrib (n m k : ℕ) : n * (m - k) = n * m - n * k :=
|
||||
calc
|
||||
n * (m - k) = (m - k) * n : !mul.comm
|
||||
... = m * n - k * n : !mul_sub_right_distrib
|
||||
... = n * m - k * n : {!mul.comm}
|
||||
... = n * m - n * k : {!mul.comm}
|
||||
|
||||
definition mul_self_sub_mul_self_eq (a b : nat) : a * a - b * b = (a + b) * (a - b) :=
|
||||
by rewrite [mul_sub_left_distrib, *mul.right_distrib, mul.comm b a, add.comm (a*a) (a*b), add_sub_add_left]
|
||||
|
||||
definition succ_mul_succ_eq (a : nat) : succ a * succ a = a*a + a + a + 1 :=
|
||||
calc succ a * succ a = (a+1)*(a+1) : by rewrite [add_one]
|
||||
... = a*a + a + a + 1 : by rewrite [mul.right_distrib, mul.left_distrib, one_mul, mul_one]
|
||||
|
||||
/- interaction with inequalities -/
|
||||
|
||||
definition succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) :=
|
||||
sub_induction n m
|
||||
(take k, assume H : 0 ≤ k, rfl)
|
||||
(take k,
|
||||
assume H : succ k ≤ 0,
|
||||
absurd H !not_succ_le_zero)
|
||||
(take k l,
|
||||
assume IH : k ≤ l → succ l - k = succ (l - k),
|
||||
take H : succ k ≤ succ l,
|
||||
calc
|
||||
succ (succ l) - succ k = succ l - k : succ_sub_succ
|
||||
... = succ (l - k) : IH (le_of_succ_le_succ H)
|
||||
... = succ (succ l - succ k) : succ_sub_succ)
|
||||
|
||||
definition sub_eq_zero_of_le {n m : ℕ} (H : n ≤ m) : n - m = 0 :=
|
||||
obtain (k : ℕ) (Hk : n + k = m), from le.elim H, Hk ▸ !sub_self_add
|
||||
|
||||
definition add_sub_of_le {n m : ℕ} : n ≤ m → n + (m - n) = m :=
|
||||
sub_induction n m
|
||||
(take k,
|
||||
assume H : 0 ≤ k,
|
||||
calc
|
||||
0 + (k - 0) = k - 0 : zero_add
|
||||
... = k : sub_zero)
|
||||
(take k, assume H : succ k ≤ 0, absurd H !not_succ_le_zero)
|
||||
(take k l,
|
||||
assume IH : k ≤ l → k + (l - k) = l,
|
||||
take H : succ k ≤ succ l,
|
||||
calc
|
||||
succ k + (succ l - succ k) = succ k + (l - k) : succ_sub_succ
|
||||
... = succ (k + (l - k)) : succ_add
|
||||
... = succ l : IH (le_of_succ_le_succ H))
|
||||
|
||||
definition add_sub_of_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n :=
|
||||
calc
|
||||
n + (m - n) = n + 0 : sub_eq_zero_of_le H
|
||||
... = n : add_zero
|
||||
|
||||
definition sub_add_cancel {n m : ℕ} : n ≥ m → n - m + m = n :=
|
||||
!add.comm ▸ !add_sub_of_le
|
||||
|
||||
definition sub_add_of_le {n m : ℕ} : n ≤ m → n - m + m = m :=
|
||||
!add.comm ▸ add_sub_of_ge
|
||||
|
||||
definition sub.cases {P : ℕ → Type} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : Πk, m + k = n -> P k)
|
||||
: P (n - m) :=
|
||||
sum.rec_on !le.total
|
||||
(assume H3 : n ≤ m, (sub_eq_zero_of_le H3)⁻¹ ▸ (H1 H3))
|
||||
(assume H3 : m ≤ n, H2 (n - m) (add_sub_of_le H3))
|
||||
|
||||
definition exists_sub_eq_of_le {n m : ℕ} (H : n ≤ m) : Σk, m - k = n :=
|
||||
obtain (k : ℕ) (Hk : n + k = m), from le.elim H,
|
||||
sigma.mk k
|
||||
(calc
|
||||
m - k = n + k - k : Hk
|
||||
... = n : add_sub_cancel)
|
||||
|
||||
definition add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k) :=
|
||||
have l1 : k ≤ m → n + m - k = n + (m - k), from
|
||||
sub_induction k m
|
||||
(take m : ℕ,
|
||||
assume H : 0 ≤ m,
|
||||
calc
|
||||
n + m - 0 = n + m : sub_zero
|
||||
... = n + (m - 0) : sub_zero)
|
||||
(take k : ℕ, assume H : succ k ≤ 0, absurd H !not_succ_le_zero)
|
||||
(take k m,
|
||||
assume IH : k ≤ m → n + m - k = n + (m - k),
|
||||
take H : succ k ≤ succ m,
|
||||
calc
|
||||
n + succ m - succ k = succ (n + m) - succ k : add_succ
|
||||
... = n + m - k : succ_sub_succ
|
||||
... = n + (m - k) : IH (le_of_succ_le_succ H)
|
||||
... = n + (succ m - succ k) : succ_sub_succ),
|
||||
l1 H
|
||||
|
||||
definition le_of_sub_eq_zero {n m : ℕ} : n - m = 0 → n ≤ m :=
|
||||
sub.cases
|
||||
(assume H1 : n ≤ m, assume H2 : 0 = 0, H1)
|
||||
(take k : ℕ,
|
||||
assume H1 : m + k = n,
|
||||
assume H2 : k = 0,
|
||||
have H3 : n = m, from !add_zero ▸ H2 ▸ H1⁻¹,
|
||||
H3 ▸ !le.refl)
|
||||
|
||||
definition sub_sub.cases {P : ℕ → ℕ → Type} {n m : ℕ} (H1 : Πk, n = m + k -> P k 0)
|
||||
(H2 : Πk, m = n + k → P 0 k) : P (n - m) (m - n) :=
|
||||
sum.rec_on !le.total
|
||||
(assume H3 : n ≤ m,
|
||||
(sub_eq_zero_of_le H3)⁻¹ ▸ (H2 (m - n) (add_sub_of_le H3)⁻¹))
|
||||
(assume H3 : m ≤ n,
|
||||
(sub_eq_zero_of_le H3)⁻¹ ▸ (H1 (n - m) (add_sub_of_le H3)⁻¹))
|
||||
|
||||
definition sub_eq_of_add_eq {n m k : ℕ} (H : n + m = k) : k - n = m :=
|
||||
have H2 : k - n + n = m + n, from
|
||||
calc
|
||||
k - n + n = k : sub_add_cancel (le.intro H)
|
||||
... = n + m : H⁻¹
|
||||
... = m + n : !add.comm,
|
||||
add.cancel_right H2
|
||||
|
||||
definition sub_le_sub_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n - k ≤ m - k :=
|
||||
obtain (l : ℕ) (Hl : n + l = m), from le.elim H,
|
||||
sum.rec_on !le.total
|
||||
(assume H2 : n ≤ k, (sub_eq_zero_of_le H2)⁻¹ ▸ !zero_le)
|
||||
(assume H2 : k ≤ n,
|
||||
have H3 : n - k + l = m - k, from
|
||||
calc
|
||||
n - k + l = l + (n - k) : add.comm
|
||||
... = l + n - k : add_sub_assoc H2 l
|
||||
... = n + l - k : add.comm
|
||||
... = m - k : Hl,
|
||||
le.intro H3)
|
||||
|
||||
definition sub_le_sub_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k - m ≤ k - n :=
|
||||
obtain (l : ℕ) (Hl : n + l = m), from le.elim H,
|
||||
sub.cases
|
||||
(assume H2 : k ≤ m, !zero_le)
|
||||
(take m' : ℕ,
|
||||
assume Hm : m + m' = k,
|
||||
have H3 : n ≤ k, from le.trans H (le.intro Hm),
|
||||
have H4 : m' + l + n = k - n + n, from
|
||||
calc
|
||||
m' + l + n = n + (m' + l) : add.comm
|
||||
... = n + (l + m') : add.comm
|
||||
... = n + l + m' : add.assoc
|
||||
... = m + m' : Hl
|
||||
... = k : Hm
|
||||
... = k - n + n : sub_add_cancel H3,
|
||||
le.intro (add.cancel_right H4))
|
||||
|
||||
definition sub_pos_of_lt {m n : ℕ} (H : m < n) : n - m > 0 :=
|
||||
have H1 : n = n - m + m, from (sub_add_cancel (le_of_lt H))⁻¹,
|
||||
have H2 : 0 + m < n - m + m, from (zero_add m)⁻¹ ▸ H1 ▸ H,
|
||||
!lt_of_add_lt_add_right H2
|
||||
|
||||
definition lt_of_sub_pos {m n : ℕ} (H : n - m > 0) : m < n :=
|
||||
lt_of_not_le
|
||||
(take H1 : m ≥ n,
|
||||
have H2 : n - m = 0, from sub_eq_zero_of_le H1,
|
||||
!lt.irrefl (H2 ▸ H))
|
||||
|
||||
definition lt_of_sub_lt_sub_right {n m k : ℕ} (H : n - k < m - k) : n < m :=
|
||||
lt_of_not_le
|
||||
(assume H1 : m ≤ n,
|
||||
have H2 : m - k ≤ n - k, from sub_le_sub_right H1 _,
|
||||
not_le_of_lt H H2)
|
||||
|
||||
definition lt_of_sub_lt_sub_left {n m k : ℕ} (H : n - m < n - k) : k < m :=
|
||||
lt_of_not_le
|
||||
(assume H1 : m ≤ k,
|
||||
have H2 : n - k ≤ n - m, from sub_le_sub_left H1 _,
|
||||
not_le_of_lt H H2)
|
||||
|
||||
definition sub_lt_sub_add_sub (n m k : ℕ) : n - k ≤ (n - m) + (m - k) :=
|
||||
sub.cases
|
||||
(assume H : n ≤ m, !zero_add⁻¹ ▸ sub_le_sub_right H k)
|
||||
(take mn : ℕ,
|
||||
assume Hmn : m + mn = n,
|
||||
sub.cases
|
||||
(assume H : m ≤ k,
|
||||
have H2 : n - k ≤ n - m, from sub_le_sub_left H n,
|
||||
have H3 : n - k ≤ mn, from sub_eq_of_add_eq Hmn ▸ H2,
|
||||
show n - k ≤ mn + 0, from !add_zero⁻¹ ▸ H3)
|
||||
(take km : ℕ,
|
||||
assume Hkm : k + km = m,
|
||||
have H : k + (mn + km) = n, from
|
||||
calc
|
||||
k + (mn + km) = k + (km + mn): add.comm
|
||||
... = k + km + mn : add.assoc
|
||||
... = m + mn : Hkm
|
||||
... = n : Hmn,
|
||||
have H2 : n - k = mn + km, from sub_eq_of_add_eq H,
|
||||
H2 ▸ !le.refl))
|
||||
|
||||
definition sub_lt_self {m n : ℕ} (H1 : m > 0) (H2 : n > 0) : m - n < m :=
|
||||
calc
|
||||
m - n = succ (pred m) - n : succ_pred_of_pos H1
|
||||
... = succ (pred m) - succ (pred n) : succ_pred_of_pos H2
|
||||
... = pred m - pred n : succ_sub_succ
|
||||
... ≤ pred m : sub_le
|
||||
... < succ (pred m) : lt_succ_self
|
||||
... = m : succ_pred_of_pos H1
|
||||
|
||||
definition le_sub_of_add_le {m n k : ℕ} (H : m + k ≤ n) : m ≤ n - k :=
|
||||
calc
|
||||
m = m + k - k : add_sub_cancel
|
||||
... ≤ n - k : sub_le_sub_right H k
|
||||
|
||||
definition lt_sub_of_add_lt {m n k : ℕ} (H : m + k < n) (H2 : k ≤ n) : m < n - k :=
|
||||
lt_of_succ_le (le_sub_of_add_le (calc
|
||||
succ m + k = succ (m + k) : succ_add_eq_succ_add
|
||||
... ≤ n : succ_le_of_lt H))
|
||||
|
||||
/- distance -/
|
||||
|
||||
definition dist [reducible] (n m : ℕ) := (n - m) + (m - n)
|
||||
|
||||
definition dist.comm (n m : ℕ) : dist n m = dist m n :=
|
||||
!add.comm
|
||||
|
||||
definition dist_self (n : ℕ) : dist n n = 0 :=
|
||||
calc
|
||||
(n - n) + (n - n) = 0 + (n - n) : sub_self
|
||||
... = 0 + 0 : sub_self
|
||||
... = 0 : rfl
|
||||
|
||||
definition eq_of_dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m :=
|
||||
have H2 : n - m = 0, from eq_zero_of_add_eq_zero_right H,
|
||||
have H3 : n ≤ m, from le_of_sub_eq_zero H2,
|
||||
have H4 : m - n = 0, from eq_zero_of_add_eq_zero_left H,
|
||||
have H5 : m ≤ n, from le_of_sub_eq_zero H4,
|
||||
le.antisymm H3 H5
|
||||
|
||||
definition dist_eq_sub_of_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n :=
|
||||
calc
|
||||
dist n m = 0 + (m - n) : {sub_eq_zero_of_le H}
|
||||
... = m - n : zero_add
|
||||
|
||||
definition dist_eq_sub_of_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m :=
|
||||
!dist.comm ▸ dist_eq_sub_of_le H
|
||||
|
||||
definition dist_zero_right (n : ℕ) : dist n 0 = n :=
|
||||
dist_eq_sub_of_ge !zero_le ⬝ !sub_zero
|
||||
|
||||
definition dist_zero_left (n : ℕ) : dist 0 n = n :=
|
||||
dist_eq_sub_of_le !zero_le ⬝ !sub_zero
|
||||
|
||||
definition dist.intro {n m k : ℕ} (H : n + m = k) : dist k n = m :=
|
||||
calc
|
||||
dist k n = k - n : dist_eq_sub_of_ge (le.intro H)
|
||||
... = m : sub_eq_of_add_eq H
|
||||
|
||||
definition dist_add_add_right (n k m : ℕ) : dist (n + k) (m + k) = dist n m :=
|
||||
calc
|
||||
dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : rfl
|
||||
... = (n - m) + ((m + k) - (n + k)) : add_sub_add_right
|
||||
... = (n - m) + (m - n) : add_sub_add_right
|
||||
|
||||
definition dist_add_add_left (k n m : ℕ) : dist (k + n) (k + m) = dist n m :=
|
||||
!add.comm ▸ !add.comm ▸ !dist_add_add_right
|
||||
|
||||
definition dist_add_eq_of_ge {n m : ℕ} (H : n ≥ m) : dist n m + m = n :=
|
||||
calc
|
||||
dist n m + m = n - m + m : {dist_eq_sub_of_ge H}
|
||||
... = n : sub_add_cancel H
|
||||
|
||||
definition dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m :=
|
||||
calc
|
||||
dist n k = dist (n + m) (k + m) : dist_add_add_right
|
||||
... = dist (k + l) (k + m) : H
|
||||
... = dist l m : dist_add_add_left
|
||||
|
||||
definition dist_sub_eq_dist_add_left {n m : ℕ} (H : n ≥ m) (k : ℕ) :
|
||||
dist (n - m) k = dist n (k + m) :=
|
||||
have H2 : n - m + (k + m) = k + n, from
|
||||
calc
|
||||
n - m + (k + m) = n - m + (m + k) : add.comm
|
||||
... = n - m + m + k : add.assoc
|
||||
... = n + k : sub_add_cancel H
|
||||
... = k + n : add.comm,
|
||||
dist_eq_intro H2
|
||||
|
||||
definition dist_sub_eq_dist_add_right {k m : ℕ} (H : k ≥ m) (n : ℕ) :
|
||||
dist n (k - m) = dist (n + m) k :=
|
||||
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
||||
|
||||
definition dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
||||
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
||||
by exact sorry,
|
||||
H ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
||||
|
||||
definition dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
||||
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
|
||||
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
|
||||
H ▸ !dist.triangle_inequality
|
||||
|
||||
definition dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
||||
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl,
|
||||
by exact sorry
|
||||
|
||||
definition dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k :=
|
||||
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl,
|
||||
by exact sorry
|
||||
|
||||
definition dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
||||
have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
||||
take k l : ℕ,
|
||||
assume H : k ≥ l,
|
||||
have H2 : m * k ≥ m * l, from mul_le_mul_left H m,
|
||||
have H3 : n * l + m * k ≥ m * l, from le.trans H2 !le_add_left,
|
||||
calc
|
||||
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
|
||||
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
|
||||
... = dist (n * k - n * l) (m * k - m * l) : by exact sorry
|
||||
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (mul_le_mul_left H n)
|
||||
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
|
||||
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)
|
||||
... = dist (n * k + m * l) (n * l + m * k) : dist_sub_eq_dist_add_right H3 _,
|
||||
sum.rec_on !le.total
|
||||
(assume H : k ≤ l, !dist.comm ▸ !dist.comm ▸ aux l k H)
|
||||
(assume H : l ≤ k, aux k l H)
|
||||
|
||||
end nat
|
|
@ -152,7 +152,7 @@ int.cases_on a
|
|||
|
||||
protected definition equiv (p q : ℕ × ℕ) : Prop := pr1 p + pr2 q = pr2 p + pr1 q
|
||||
|
||||
local notation p `≡` q := equiv p q
|
||||
local infix `≡` := int.equiv
|
||||
|
||||
protected theorem equiv.refl [refl] {p : ℕ × ℕ} : p ≡ p := !add.comm
|
||||
|
||||
|
|
|
@ -84,8 +84,7 @@ sub rename_in_file {
|
|||
while (<>) {
|
||||
foreach my $lkey (keys %literalrenamings2) {
|
||||
# replace all instances of lkey
|
||||
if (/$lkey/) {print STDOUT "renamed ", $lkey, "\n"; }
|
||||
# else {print STDOUT "WARNING: didn't rename ", $lkey, " to ", $literalrenamings2{$lkey}, "\n";}
|
||||
# if (/$lkey/) {print STDOUT "renamed ", $lkey, "\n"; }
|
||||
s/$lkey/$literalrenamings2{$lkey}/g
|
||||
}
|
||||
foreach my $key (keys %renamings) {
|
||||
|
@ -103,6 +102,7 @@ sub rename_in_file {
|
|||
|
||||
my $oldfile = shift;
|
||||
my $newfile = shift;
|
||||
if (-e $newfile) {move($newfile,$newfile.".orig") or die "Move failed: $!"; }
|
||||
print "copying ", $oldfile, " to ",$newfile, ".\n";
|
||||
copy($oldfile,$newfile) or die "Copy failed: $!";
|
||||
get_renamings;
|
||||
|
|
|
@ -20,7 +20,8 @@
|
|||
# have to be escaped
|
||||
|
||||
now=$(date +"%B %d, %Y")
|
||||
./port.pl ../library/data/nat/basic.lean ../hott/types/nat/basic.hlean "Module: data.nat.basic" "Module: types.nat.basic
|
||||
(Ported from standard library file data.nat.basic on $now)" "import logic.connectives data.num algebra.binary algebra.ring" "import algebra.binary" "open binary eq.ops" "open core prod binary" "nat.no_confusion H \(λe, e\)" "lift.down (nat.no_confusion H (λe, e))"
|
||||
./port.pl ../library/data/nat/basic.lean ../hott/types/nat/basic2.hlean "Module: data.nat.basic" "Module: types.nat.basic
|
||||
(Ported from standard library file data.nat.basic on $now)" "import logic.connectives data.num algebra.binary algebra.ring" "import algebra.ring" "open binary eq.ops" "open core prod binary" "nat.no_confusion H \(λe, e\)" "lift.down (nat.no_confusion H (λe, e))"
|
||||
|
||||
# ./port.pl ../library/logic/connectives.lean ../hott/logic.hlean
|
||||
/port.pl ../library/algebra/ring.lean ../hott/algebra/ring.hlean "import logic.eq logic.connectives data.unit data.sigma data.prod" "import algebra.group" "import algebra.function algebra.binary algebra.group" "" "open eq eq.ops" "open core"
|
||||
|
|
|
@ -1,21 +1,44 @@
|
|||
Prop:Type
|
||||
theorem:definition
|
||||
by simp;by exact sorry
|
||||
|
||||
true:unit
|
||||
trivial:star
|
||||
is_true:is_unit
|
||||
|
||||
false:empty
|
||||
is_false:is_empty
|
||||
|
||||
induction:rec
|
||||
induction_on:rec_on
|
||||
|
||||
∨;⊎
|
||||
or.elim:sum.rec_on
|
||||
or.inl:sum.inl
|
||||
or.inr:sum.inr
|
||||
or.intro_left _;sum.inl
|
||||
or.intro_right _;sum.inr
|
||||
or_resolve_right:sum_resolve_right
|
||||
or_resolve_left:sum_resolve_left
|
||||
or.swap:sum.swap
|
||||
or.rec_on:sum.rec_on
|
||||
or_of_or_of_imp_of_imp:sum_of_sum_of_imp_of_imp
|
||||
or_of_or_of_imp_left:sum_of_sum_of_imp_left
|
||||
or_of_or_of_imp_right:sum_of_sum_of_imp_right
|
||||
|
||||
∧;×
|
||||
and.intro:pair
|
||||
and.left:
|
||||
and.elim_left:pr1
|
||||
and.elim_right:pr2
|
||||
and.elim_left:prod.pr1
|
||||
and.left:prod.pr1
|
||||
and.elim_right:prod.pr2
|
||||
and.right:prod.pr2
|
||||
|
||||
∀;Π
|
||||
|
||||
∃;Σ
|
||||
exists.intro:sigma.mk
|
||||
exists.elim:sigma.rec_on
|
||||
|
||||
eq.symm:inverse
|
||||
congr_arg:ap
|
||||
or_resolve_right:sum_resolve_right
|
||||
or_resolve_left:sum_resolve_left
|
||||
true:unit
|
||||
trivial:star
|
||||
false:empty
|
||||
|
|
Loading…
Reference in a new issue