feat(library/theories/number_theory/prime_factorization): begin theory, with multiplicity and prime_factors
This commit is contained in:
parent
ac7f7cee63
commit
7f1993be41
2 changed files with 220 additions and 1 deletions
|
@ -1,4 +1,6 @@
|
||||||
theories.number_theory
|
theories.number_theory
|
||||||
======================
|
======================
|
||||||
|
|
||||||
* [bezout](bezout.lean)
|
* [primes](primes.lean)
|
||||||
|
* [bezout](bezout.lean) : Bezout's theorem
|
||||||
|
* [prime_factorization](prime_factorization.lean) : prime divisors and multiplicity
|
217
library/theories/number_theory/prime_factorization.lean
Normal file
217
library/theories/number_theory/prime_factorization.lean
Normal file
|
@ -0,0 +1,217 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Jeremy Avigad
|
||||||
|
|
||||||
|
Multiplicity and prime factors. We have:
|
||||||
|
|
||||||
|
mult p n := the greatest power of p dividing n if p > 1 and n > 0, and 0 otherwise.
|
||||||
|
prime_factors n := the finite set of prime factors of n, assuming n > 0
|
||||||
|
|
||||||
|
-/
|
||||||
|
import data.nat data.finset .primes
|
||||||
|
open eq.ops finset well_founded decidable
|
||||||
|
|
||||||
|
namespace nat
|
||||||
|
|
||||||
|
/- multiplicity -/
|
||||||
|
|
||||||
|
theorem mult_rec_decreasing {p n : ℕ} (Hp : p > 1) (Hn : n > 0) : n div p < n :=
|
||||||
|
have H' : n < n * p,
|
||||||
|
by rewrite [-mul_one n at {1}]; apply mul_lt_mul_of_pos_left Hp Hn,
|
||||||
|
div_lt_of_lt_mul H'
|
||||||
|
|
||||||
|
private definition mult.F (p : ℕ) (n : ℕ) (f: Π {m : ℕ}, m < n → ℕ) : ℕ :=
|
||||||
|
if H : (p > 1 ∧ n > 0) ∧ p ∣ n then
|
||||||
|
succ (f (mult_rec_decreasing (and.left (and.left H)) (and.right (and.left H))))
|
||||||
|
else 0
|
||||||
|
|
||||||
|
definition mult (p n : ℕ) : ℕ := fix (mult.F p) n
|
||||||
|
|
||||||
|
theorem mult_rec {p n : ℕ} (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p ∣ n) :
|
||||||
|
mult p n = succ (mult p (n div p)) :=
|
||||||
|
have H : (p > 1 ∧ n > 0) ∧ p ∣ n, from and.intro (and.intro pgt1 ngt0) pdivn,
|
||||||
|
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos H)
|
||||||
|
|
||||||
|
private theorem mult_base {p n : ℕ} (H : ¬ ((p > 1 ∧ n > 0) ∧ p ∣ n)) :
|
||||||
|
mult p n = 0 :=
|
||||||
|
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_neg H)
|
||||||
|
|
||||||
|
theorem mult_zero_right (p : ℕ) : mult p 0 = 0 :=
|
||||||
|
mult_base (assume H, !lt.irrefl (and.right (and.left H)))
|
||||||
|
|
||||||
|
theorem mult_eq_zero_of_not_dvd {p n : ℕ} (H : ¬ p ∣ n) : mult p n = 0 :=
|
||||||
|
mult_base (assume H', H (and.right H'))
|
||||||
|
|
||||||
|
theorem mult_eq_zero_of_le_one {p : ℕ} (n : ℕ) (H : p ≤ 1) : mult p n = 0 :=
|
||||||
|
mult_base (assume H', not_lt_of_ge H (and.left (and.left H')))
|
||||||
|
|
||||||
|
theorem mult_zero_left (n : ℕ) : mult 0 n = 0 :=
|
||||||
|
mult_eq_zero_of_le_one n !dec_trivial
|
||||||
|
|
||||||
|
theorem mult_one_left (n : ℕ) : mult 1 n = 0 :=
|
||||||
|
mult_eq_zero_of_le_one n !dec_trivial
|
||||||
|
|
||||||
|
theorem mult_pos_of_dvd {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pdvdn : p ∣ n) : mult p n > 0 :=
|
||||||
|
by rewrite (mult_rec pgt1 npos pdvdn); apply succ_pos
|
||||||
|
|
||||||
|
theorem not_dvd_of_mult_eq_zero {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) :
|
||||||
|
¬ p ∣ n :=
|
||||||
|
assume pdvdn : p ∣ n,
|
||||||
|
ne_of_gt (mult_pos_of_dvd pgt1 npos pdvdn) H
|
||||||
|
|
||||||
|
theorem dvd_of_mult_pos {p n : ℕ} (H : mult p n > 0) : p ∣ n :=
|
||||||
|
by_contradiction (assume npdvdn : ¬ p ∣ n, ne_of_gt H (mult_eq_zero_of_not_dvd npdvdn))
|
||||||
|
|
||||||
|
/- properties of mult -/
|
||||||
|
|
||||||
|
theorem pow_mult_dvd (p n : ℕ) : p^(mult p n) ∣ n :=
|
||||||
|
begin
|
||||||
|
induction n using nat.strong_induction_on with [n, ih],
|
||||||
|
cases eq_zero_or_pos n with [nz, npos],
|
||||||
|
{rewrite nz, apply dvd_zero},
|
||||||
|
cases le_or_gt p 1 with [ple1, pgt1],
|
||||||
|
{rewrite [!mult_eq_zero_of_le_one ple1, pow_zero], apply one_dvd},
|
||||||
|
cases (or.swap (em (p ∣ n))) with [pndvdn, pdvdn],
|
||||||
|
{rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd},
|
||||||
|
show p ^ (mult p n) ∣ n, from dvd.elim pdvdn
|
||||||
|
(take n',
|
||||||
|
assume Hn' : n = p * n',
|
||||||
|
have ppos : p > 0, from lt.trans zero_lt_one pgt1,
|
||||||
|
assert ndivpeq : n div p = n', from !div_eq_of_eq_mul_right ppos Hn',
|
||||||
|
assert ndivplt : n' < n,
|
||||||
|
by rewrite -ndivpeq; apply mult_rec_decreasing pgt1 npos,
|
||||||
|
begin
|
||||||
|
rewrite [mult_rec pgt1 npos pdvdn, ndivpeq, pow_succ', Hn'],
|
||||||
|
apply mul_dvd_mul !dvd.refl,
|
||||||
|
apply ih _ ndivplt
|
||||||
|
end)
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem mult_one_right (p : ℕ) : mult p 1 = 0:=
|
||||||
|
assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd,
|
||||||
|
or.elim (le_or_gt p 1)
|
||||||
|
(assume H1 : p ≤ 1, by rewrite [!mult_eq_zero_of_le_one H1])
|
||||||
|
(assume H1 : p > 1,
|
||||||
|
by_contradiction
|
||||||
|
assume H2 : mult p 1 ≠ 0,
|
||||||
|
have H3 : mult p 1 > 0, from pos_of_ne_zero H2,
|
||||||
|
assert H4 : p^(mult p 1) > 1, from pow_gt_one H1 H3,
|
||||||
|
show false, by rewrite H at H4; apply !lt.irrefl H4)
|
||||||
|
|
||||||
|
private theorem mult_pow_mul {p n : ℕ} (i : ℕ) (pgt1 : p > 1) (npos : n > 0) :
|
||||||
|
mult p (p^i * n) = i + mult p n :=
|
||||||
|
begin
|
||||||
|
induction i with [i, ih],
|
||||||
|
rewrite [pow_zero, one_mul, zero_add], -- strange: this fails with {brackets} around it
|
||||||
|
have ppos : p > 0, from lt.trans zero_lt_one pgt1,
|
||||||
|
have psin_pos : p^(succ i) * n > 0, from mul_pos (!pow_pos_of_pos ppos) npos,
|
||||||
|
have pdvd : p ∣ p^(succ i) * n, by rewrite [pow_succ', mul.assoc]; apply dvd_mul_right,
|
||||||
|
rewrite [mult_rec pgt1 psin_pos pdvd, pow_succ, mul.right_comm, !mul_div_cancel ppos, ih],
|
||||||
|
rewrite [add.comm i, add.comm (succ i)]
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem mult_pow {p : ℕ} (i : ℕ) (pgt1 : p > 1) : mult p (p^i) = i :=
|
||||||
|
by rewrite [-(mul_one (p^i)), mult_pow_mul i pgt1 zero_lt_one, mult_one_right]
|
||||||
|
|
||||||
|
theorem le_mult {p i n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i ∣ n) : i ≤ mult p n :=
|
||||||
|
dvd.elim pidvd
|
||||||
|
(take m,
|
||||||
|
assume neq : n = p^i * m,
|
||||||
|
assert mpos : m > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
||||||
|
by rewrite [neq, mult_pow_mul i pgt1 mpos]; apply le_add_right)
|
||||||
|
|
||||||
|
theorem not_dvd_div_pow_mult {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) : ¬ p ∣ n div p^(mult p n) :=
|
||||||
|
assume pdvd : p ∣ n div p^(mult p n),
|
||||||
|
obtain m (H : n div p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd,
|
||||||
|
assert neq : n = p^(succ (mult p n)) * m, from
|
||||||
|
calc
|
||||||
|
n = p^mult p n * (n div p^mult p n) : by rewrite (mul_div_cancel' !pow_mult_dvd)
|
||||||
|
... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ, mul.assoc],
|
||||||
|
have H1 : p^(succ (mult p n)) ∣ n, by rewrite neq at {2}; apply dvd_mul_right,
|
||||||
|
have H2 : succ (mult p n) ≤ mult p n, from le_mult pgt1 npos H1,
|
||||||
|
show false, from !not_succ_le_self H2
|
||||||
|
|
||||||
|
theorem mult_mul {p m n : ℕ} (primep : prime p) (mpos : m > 0) (npos : n > 0) :
|
||||||
|
mult p (m * n) = mult p m + mult p n :=
|
||||||
|
let m' := m div p^mult p m, n' := n div p^mult p n in
|
||||||
|
assert pgt1 : p > 1, from gt_one_of_prime primep,
|
||||||
|
assert meq : m = p^mult p m * m', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||||||
|
assert neq : n = p^mult p n * n', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||||||
|
have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos),
|
||||||
|
have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
||||||
|
have npdvdm' : ¬ p ∣ m', from !not_dvd_div_pow_mult pgt1 mpos,
|
||||||
|
have npdvdn' : ¬ p ∣ n', from !not_dvd_div_pow_mult pgt1 npos,
|
||||||
|
assert npdvdm'n' : ¬ p ∣ m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn',
|
||||||
|
assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos,
|
||||||
|
assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n',
|
||||||
|
calc
|
||||||
|
mult p (m * n) = mult p (p^(mult p m + mult p n) * (m' * n')) :
|
||||||
|
by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc,
|
||||||
|
mul.comm (n div _), -neq]
|
||||||
|
... = mult p m + mult p n :
|
||||||
|
by rewrite [!mult_pow_mul pgt1 m'n'pos, multm'n']
|
||||||
|
|
||||||
|
theorem dvd_of_forall_prime_mult_le {m n : ℕ} (mpos : m > 0)
|
||||||
|
(H : ∀ {p}, prime p → mult p m ≤ mult p n) :
|
||||||
|
m ∣ n :=
|
||||||
|
begin
|
||||||
|
revert H, revert n,
|
||||||
|
induction m using nat.strong_induction_on with [m, ih],
|
||||||
|
cases (decidable.em (m = 1)) with [meq, mneq],
|
||||||
|
{intros, rewrite meq, apply one_dvd},
|
||||||
|
have mgt1 : m > 1, from lt_of_le_of_ne (succ_le_of_lt mpos) (ne.symm mneq),
|
||||||
|
have mge2 : m ≥ 2, from succ_le_of_lt mgt1,
|
||||||
|
have hpd : ∃ p, prime p ∧ p ∣ m, from ex_prime_and_dvd mge2,
|
||||||
|
cases hpd with [p, H1],
|
||||||
|
cases H1 with [primep, pdvdm],
|
||||||
|
intro n,
|
||||||
|
cases (eq_zero_or_pos n) with [nz, npos],
|
||||||
|
{intros; rewrite nz; apply dvd_zero},
|
||||||
|
assume H : ∀ {p : ℕ}, prime p → mult p m ≤ mult p n,
|
||||||
|
obtain m' (meq : m = p * m'), from exists_eq_mul_right_of_dvd pdvdm,
|
||||||
|
assert pgt1 : p > 1, from gt_one_of_prime primep,
|
||||||
|
assert m'pos : m' > 0, from pos_of_ne_zero
|
||||||
|
(assume m'z, by revert mpos; rewrite [meq, m'z, mul_zero]; apply not_lt_zero),
|
||||||
|
have m'ltm : m' < m,
|
||||||
|
by rewrite [meq, -one_mul m' at {1}]; apply mul_lt_mul_of_lt_of_le m'pos pgt1 !le.refl,
|
||||||
|
have multpm : mult p m ≥ 1, from le_mult pgt1 mpos (by rewrite pow_one; apply pdvdm),
|
||||||
|
have multpn : mult p n ≥ 1, from le.trans multpm (H primep),
|
||||||
|
obtain n' (neq : n = p * n'),
|
||||||
|
from exists_eq_mul_right_of_dvd (dvd_of_mult_pos (lt_of_succ_le multpn)),
|
||||||
|
assert n'pos : n' > 0, from pos_of_ne_zero
|
||||||
|
(assume n'z, by revert npos; rewrite [neq, n'z, mul_zero]; apply not_lt_zero),
|
||||||
|
have H' : ∀q, prime q → mult q m' ≤ mult q n', from
|
||||||
|
(take q,
|
||||||
|
assume primeq : prime q,
|
||||||
|
have multqm : mult q m = mult q p + mult q m',
|
||||||
|
by rewrite [meq, mult_mul primeq (pos_of_prime primep) m'pos],
|
||||||
|
have multqn : mult q n = mult q p + mult q n',
|
||||||
|
by rewrite [neq, mult_mul primeq (pos_of_prime primep) n'pos],
|
||||||
|
show mult q m' ≤ mult q n', from le_of_add_le_add_left (multqm ▸ multqn ▸ H primeq)),
|
||||||
|
assert m'dvdn' : m' ∣ n', from ih m' m'ltm m'pos n' H',
|
||||||
|
show m ∣ n, by rewrite [meq, neq]; apply mul_dvd_mul !dvd.refl m'dvdn'
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem eq_of_forall_prime_mult_eq {m n : ℕ} (mpos : m > 0) (npos : n > 0)
|
||||||
|
(H : ∀ {p}, prime p → mult p m = mult p n) : m = n :=
|
||||||
|
dvd.antisymm
|
||||||
|
(dvd_of_forall_prime_mult_le mpos (take p, assume primep, H primep ▸ !le.refl))
|
||||||
|
(dvd_of_forall_prime_mult_le npos (take p, assume primep, H primep ▸ !le.refl))
|
||||||
|
|
||||||
|
/- prime factors -/
|
||||||
|
|
||||||
|
definition prime_factors (n : ℕ) : finset ℕ := { p ∈ upto (succ n) | prime p ∧ p ∣ n }
|
||||||
|
|
||||||
|
theorem prime_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : prime p :=
|
||||||
|
and.left (of_mem_filter H)
|
||||||
|
|
||||||
|
theorem dvd_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : p ∣ n :=
|
||||||
|
and.right (of_mem_filter H)
|
||||||
|
|
||||||
|
theorem mem_prime_factors {p n : ℕ} (npos : n > 0) (primep : prime p) (pdvdn : p ∣ n) :
|
||||||
|
p ∈ prime_factors n :=
|
||||||
|
have plen : p ≤ n, from le_of_dvd npos pdvdn,
|
||||||
|
mem_filter_of_mem (mem_upto_of_lt (lt_succ_of_le plen)) (and.intro primep pdvdn)
|
||||||
|
|
||||||
|
end nat
|
Loading…
Reference in a new issue