refactor(library/theories/number_theory/primes): add some minor theorems, and rename some theorems

This commit is contained in:
Jeremy Avigad 2015-07-08 11:55:31 +10:00 committed by Leonardo de Moura
parent d9098ff4e5
commit ac7f7cee63

View file

@ -1,9 +1,9 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Authors: Leonardo de Moura, Jeremy Avigad
Prime numbers
Prime numbers.
-/
import data.nat logic.identities
open bool
@ -33,6 +33,12 @@ decidable_of_decidable_of_iff _ (prime_ext_iff_prime p)
lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 :=
assume h, obtain h₁ h₂, from h, h₁
theorem gt_one_of_prime {p : } (primep : prime p) : p > 1 :=
lt_of_succ_le (ge_two_of_prime primep)
theorem pos_of_prime {p : } (primep : prime p) : p > 0 :=
lt.trans zero_lt_one (gt_one_of_prime primep)
lemma not_prime_zero : ¬ prime 0 :=
λ h, absurd (ge_two_of_prime h) dec_trivial
@ -51,9 +57,9 @@ have h₁ : p ≥ 2, from ge_two_of_prime h,
lt_of_succ_le (pred_le_pred h₁)
lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p :=
assume h, succ_pred_of_pos (lt_of_succ_le (le_of_succ_le (ge_two_of_prime h)))
assume h, succ_pred_of_pos (pos_of_prime h)
lemma divisor_of_prime {p m : nat} : prime p → m p → m = 1 m = p :=
lemma eq_one_or_eq_self_of_prime_of_dvd {p m : nat} : prime p → m p → m = 1 m = p :=
assume h d, obtain h₁ h₂, from h, h₂ m d
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
@ -63,7 +69,7 @@ have h₂ : p ≥ 2, from ge_two_of_prime ipp,
have h₃ : p ≤ i, from le_of_dvd pos h₁,
lt_of_succ_le (le.trans h₂ h₃)
theorem has_divisor_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n :=
theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n :=
assume h₁ h₂,
have h₃ : ¬ prime_ext n, from iff.mp' (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
have h₄ : ¬ n ≥ 2 ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from iff.mp !not_and_iff_not_or_not h₃,
@ -76,10 +82,10 @@ obtain (h₈ : m n) (h₉ : ¬ (m = 1 m = n)), from iff.mp !not_implies_
have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉,
exists.intro m (and.intro h₈ h₁₀)
theorem has_divisor_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≥ 2 ∧ m < n :=
theorem ex_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≥ 2 ∧ m < n :=
assume h₁ h₂,
have n_ne_0 : n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end,
obtain m m_dvd_n m_ne_1 m_ne_n, from has_divisor_of_not_prime h₁ h₂,
obtain m m_dvd_n m_ne_1 m_ne_n, from ex_dvd_of_not_prime h₁ h₂,
assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) n_ne_0 end,
begin
existsi m, split, assumption,
@ -89,7 +95,7 @@ begin
exact lt_of_le_and_ne m_le_n m_ne_n}
end
theorem has_prime_divisor {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p n :=
theorem ex_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p n :=
nat.strong_induction_on n
(take n,
assume ih : ∀ m, m < n → m ≥ 2 → ∃ p, prime p ∧ p m,
@ -97,7 +103,7 @@ nat.strong_induction_on n
by_cases
(λ h : prime n, exists.intro n (and.intro h (dvd.refl n)))
(λ h : ¬ prime n,
obtain m m_dvd_n m_ge_2 m_lt_n, from has_divisor_of_not_prime2 n_ge_2 h,
obtain m m_dvd_n m_ge_2 m_lt_n, from ex_dvd_of_not_prime2 n_ge_2 h,
obtain p (hp : prime p) (p_dvd_m : p m), from ih m m_lt_n m_ge_2,
have p_dvd_n : p n, from dvd.trans p_dvd_m m_dvd_n,
exists.intro p (and.intro hp p_dvd_n)))
@ -109,7 +115,7 @@ let m := fact (n + 1) in
have Hn1 : n + 1 ≥ 1, from succ_le_succ (zero_le _),
have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_gt_0 _)),
have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1,
obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from has_prime_divisor m1_ge_2,
obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from ex_prime_and_dvd m1_ge_2,
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
have p_ge_n : p ≥ n, from by_contradiction
@ -127,26 +133,47 @@ lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p :=
have even_p : even p, from even_of_not_odd hn,
obtain k (hk : p = 2*k), from exists_of_even even_p,
assert two_div_p : 2 p, by rewrite [hk]; apply dvd_mul_right,
or.elim (divisor_of_prime pp two_div_p)
or.elim (eq_one_or_eq_self_of_prime_of_dvd pp two_div_p)
(λ h : 2 = 1, absurd h dec_trivial)
(λ h : 2 = p, by subst h; exact absurd p_gt_2 !lt.irrefl))
lemma coprime_of_prime_of_not_dvd {p n : nat} : prime p → ¬ p n → coprime p n :=
λ pp h₂,
assert d₁ : gcd p n p, from !gcd_dvd_left,
assert d₂ : gcd p n n, from !gcd_dvd_right,
or.elim (divisor_of_prime pp d₁)
(λ h : gcd p n = 1, h)
(λ h : gcd p n = p,
assert d₃ : p n, by rewrite -h; exact d₂,
by contradiction)
theorem dvd_of_prime_of_not_coprime {p n : } (primep : prime p) (nc : ¬ coprime p n) : p n :=
have H : gcd p n = 1 gcd p n = p, from eq_one_or_eq_self_of_prime_of_dvd primep !gcd_dvd_left,
or_resolve_right H nc ▸ !gcd_dvd_right
theorem coprime_of_prime_of_not_dvd {p n : } (primep : prime p) (npdvdn : ¬ p n) :
coprime p n :=
by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep nc))
theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n :=
assume pdvdn : p n,
have H1 : p gcd p n, from dvd_gcd !dvd.refl pdvdn,
have H2 : p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) H1,
have H3 : 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ H2),
show false, from !not_succ_le_self H3
theorem not_coprime_of_prime_dvd {p n : } (primep : prime p) (pdvdn : p n) : ¬ coprime p n :=
assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
theorem dvd_of_prime_of_dvd_mul_left {p m n : } (primep : prime p)
(Hmn : p m * n) (Hm : ¬ p m) :
p n :=
have copm : coprime p m, from coprime_of_prime_of_not_dvd primep Hm,
show p n, from dvd_of_coprime_of_dvd_mul_left copm Hmn
theorem dvd_of_prime_of_dvd_mul_right {p m n : } (primep : prime p)
(Hmn : p m * n) (Hn : ¬ p n) :
p m :=
dvd_of_prime_of_dvd_mul_left primep (!mul.comm ▸ Hmn) Hn
theorem not_dvd_mul_of_prime {p m n : } (primep : prime p) (Hm : ¬ p m) (Hn : ¬ p n) :
¬ p m * n :=
assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn)
lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n → p m p n :=
λ h₁ h₂, by_contradiction (λ h,
obtain (n₁ : ¬ p m) (n₂ : ¬ p n), from iff.mp !not_or_iff_not_and_not h,
assert c₁ : coprime p m, from coprime_of_prime_of_not_dvd h₁ n₁,
assert n₃ : p n, from dvd_of_coprime_of_dvd_mul_left c₁ h₂,
by contradiction)
λ h₁ h₂, by_cases
(assume h : p m, or.inl h)
(assume h : ¬ p m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ h))
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m
| 0 hp hd :=
@ -166,11 +193,11 @@ lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p
λ hp hq hn,
assert d₁ : gcd p q p, from !gcd_dvd_left,
assert d₂ : gcd p q q, from !gcd_dvd_right,
or.elim (divisor_of_prime hp d₁)
or.elim (eq_one_or_eq_self_of_prime_of_dvd hp d₁)
(λ h : gcd p q = 1, h)
(λ h : gcd p q = p,
have d₃ : p q, by rewrite -h; exact d₂,
or.elim (divisor_of_prime hq d₃)
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq d₃)
(λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one)
(λ he : p = q, by contradiction))
@ -182,12 +209,12 @@ by_cases
(λ h : p i, or.inr h)
(λ h : ¬ p i, or.inl (coprime_of_prime_of_not_dvd Pp h))
lemma divisor_of_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i (p^m) → i = 1 p i
lemma eq_one_or_dvd_of_dvd_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i (p^m) → i = 1 p i
| 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end
| (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i)
(λ Pcp, begin
rewrite [pow_succ], intro Pdvd,
apply divisor_of_prime_pow Pp,
apply eq_one_or_dvd_of_dvd_prime_pow Pp,
apply dvd_of_coprime_of_dvd_mul_right,
apply coprime_swap Pcp, exact Pdvd
end)