feat(library/elaborator): only expand definitions that are not marked as hidden
The elaborator produces better proof terms. This is particularly important when we have to prove the remaining holes using tactics. For example, in one of the tests, the elaborator was producing the sub-expression (λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ⊤) == (λ x : N, ⊤)) ⊥ ⊤) After, this commit it produces (λ x : N, ¬ ∀ x::1 : N, ¬ P a x x::1) The expressions above are definitionally equal, but the second is easier to work with. Question: do we really need hidden definitions? Perhaps, we can use only the opaque flag. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
cb48fbf3c4
commit
812c1a2960
8 changed files with 101 additions and 100 deletions
|
@ -19,6 +19,7 @@ Author: Leonardo de Moura
|
|||
#include "kernel/replace_fn.h"
|
||||
#include "kernel/builtin.h"
|
||||
#include "kernel/update_expr.h"
|
||||
#include "library/hidden_defs.h"
|
||||
#include "library/type_inferer.h"
|
||||
#include "library/elaborator/elaborator.h"
|
||||
#include "library/elaborator/elaborator_justification.h"
|
||||
|
@ -626,7 +627,7 @@ class elaborator::imp {
|
|||
int get_const_weight(expr const & a) {
|
||||
lean_assert(is_constant(a));
|
||||
optional<object> obj = m_env->find_object(const_name(a));
|
||||
if (obj && obj->is_definition() && !obj->is_opaque())
|
||||
if (obj && obj->is_definition() && !obj->is_opaque() && !is_hidden(m_env, const_name(a)))
|
||||
return obj->get_weight();
|
||||
else
|
||||
return -1;
|
||||
|
|
|
@ -63,7 +63,7 @@ void set_hidden_flag(environment const & env, name const & d, bool flag) {
|
|||
|
||||
void hide_builtin(environment const & env) {
|
||||
for (auto c : { mk_implies_fn(), mk_iff_fn(), mk_not_fn(), mk_or_fn(), mk_and_fn(),
|
||||
mk_forall_fn(), mk_exists_fn(), mk_homo_eq_fn() })
|
||||
mk_forall_fn() })
|
||||
set_hidden_flag(env, const_name(c));
|
||||
}
|
||||
|
||||
|
|
|
@ -130,12 +130,8 @@ A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C
|
|||
Assumed: b
|
||||
Assumed: H
|
||||
Failed to solve
|
||||
⊢ if ?M::0 (if (if ?M::3 (if a ⊥ ⊤) ⊤) ⊥ ⊤) ⊤ ≺ b
|
||||
Normalize
|
||||
⊢ if ?M::0 (?M::3 ∧ a) ⊤ ≺ b
|
||||
⊢ ?M::0 ⇒ ?M::3 ∧ a ≺ b
|
||||
Substitution
|
||||
⊢ if ?M::0 ?M::1 ⊤ ≺ b
|
||||
Normalize
|
||||
⊢ ?M::0 ⇒ ?M::1 ≺ b
|
||||
(line: 20: pos: 18) Type of definition 't1' must be convertible to expected type.
|
||||
Assignment
|
||||
|
@ -342,9 +338,7 @@ Failed to solve
|
|||
⊢ ?M::1 ≈ Bool
|
||||
Assumption 6
|
||||
Failed to solve
|
||||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ if (if a b ⊤) a ⊤ ≺ a
|
||||
Normalize
|
||||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
|
||||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
|
||||
Substitution
|
||||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1]
|
||||
Substitution
|
||||
|
@ -371,8 +365,7 @@ a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ if (if a b ⊤) a ⊤ ≺ a
|
|||
with arguments:
|
||||
?M::0
|
||||
?M::1
|
||||
λ H : ?M::2,
|
||||
DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
|
||||
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
|
||||
Assignment
|
||||
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
|
||||
Destruct/Decompose
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
Theorem ForallIntro2 (A : (Type U)) (P : A -> Bool) (H : Pi x, P x) : forall x, P x :=
|
||||
Abst (fun x, EqTIntro (H x))
|
|
@ -17,7 +17,7 @@ Theorem T1 : ∃ x y z : N, P x y z :=
|
|||
a
|
||||
(ExistsIntro::explicit
|
||||
N
|
||||
(λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ⊤) == (λ x : N, ⊤)) ⊥ ⊤)
|
||||
(λ x : N, ¬ ∀ x::1 : N, ¬ P a x x::1)
|
||||
b
|
||||
(ExistsIntro::explicit N (λ z : N, P a b z) c H3))
|
||||
Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
|
||||
|
|
9
tests/lean/interactive/elab6.lean
Normal file
9
tests/lean/interactive/elab6.lean
Normal file
|
@ -0,0 +1,9 @@
|
|||
(**
|
||||
-- The elaborator does not expand definitions marked as 'hidden'.
|
||||
-- To be able to prove the following theorem, we have to unmark the
|
||||
-- 'forall'
|
||||
local env = get_environment()
|
||||
set_hidden_flag(env, "forall", false)
|
||||
**)
|
||||
Theorem ForallIntro2 (A : (Type U)) (P : A -> Bool) (H : Pi x, P x) : forall x, P x :=
|
||||
Abst (fun x, EqTIntro (H x))
|
|
@ -1,3 +1,3 @@
|
|||
Set: pp::colors
|
||||
# Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Proved: ForallIntro2
|
|
@ -84,8 +84,8 @@ Theorem Example2 (a b c d : N)
|
|||
a
|
||||
b
|
||||
c
|
||||
(Conjunct1::explicit (a == b) (b == c) H1)
|
||||
(Conjunct2::explicit (a == b) (b == c) H1))
|
||||
(Conjunct1::explicit (a == b) (eq::explicit N b c) H1)
|
||||
(Conjunct2::explicit (eq::explicit N a b) (b == c) H1))
|
||||
(Refl::explicit N b))
|
||||
(λ H1 : eq::explicit N a d ∧ eq::explicit N d c,
|
||||
CongrH::explicit
|
||||
|
@ -98,8 +98,8 @@ Theorem Example2 (a b c d : N)
|
|||
a
|
||||
d
|
||||
c
|
||||
(Conjunct1::explicit (a == d) (d == c) H1)
|
||||
(Conjunct2::explicit (a == d) (d == c) H1))
|
||||
(Conjunct1::explicit (a == d) (eq::explicit N d c) H1)
|
||||
(Conjunct2::explicit (eq::explicit N a d) (d == c) H1))
|
||||
(Refl::explicit N b))
|
||||
Proved: Example3
|
||||
Set: lean::pp::implicit
|
||||
|
|
Loading…
Reference in a new issue