feat(frontends/lean): add 'suppose'-expression

It is a variant of 'assume' that allow anonymous declarations.
This commit is contained in:
Leonardo de Moura 2015-07-19 12:15:12 -07:00
parent 5112232d6d
commit 812ddf1ef5
6 changed files with 91 additions and 59 deletions

View file

@ -311,22 +311,21 @@ list.rec_on l
decidable.rec_on iH decidable.rec_on iH
(assume Hp : x ∈ l, (assume Hp : x ∈ l,
decidable.rec_on (H x h) decidable.rec_on (H x h)
(assume Heq : x = h, (suppose x = h,
decidable.inl (or.inl Heq)) decidable.inl (or.inl this))
(assume Hne : x ≠ h, (suppose x ≠ h,
decidable.inl (or.inr Hp))) decidable.inl (or.inr Hp)))
(assume Hn : ¬x ∈ l, (suppose ¬x ∈ l,
decidable.rec_on (H x h) decidable.rec_on (H x h)
(assume Heq : x = h, (suppose x = h, decidable.inl (or.inl this))
decidable.inl (or.inl Heq)) (suppose x ≠ h,
(assume Hne : x ≠ h, have ¬(x = h x ∈ l), from
have H1 : ¬(x = h x ∈ l), from suppose x = h x ∈ l, or.elim this
assume H2 : x = h x ∈ l, or.elim H2 (suppose x = h, by contradiction)
(assume Heq, by contradiction) (suppose x ∈ l, by contradiction),
(assume Hp, by contradiction), have ¬x ∈ h::l, from
have H2 : ¬x ∈ h::l, from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this,
iff.elim_right (not_iff_not_of_iff !mem_cons_iff) H1, decidable.inr this)))
decidable.inr H2)))
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l := theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r) or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r)
@ -378,24 +377,24 @@ theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁
theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ := theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l), λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₁, from s xinl, have x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl xinl₁) mem_append_of_mem_or_mem (or.inl this)
theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ := theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l), λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₂, from s xinl, have x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr xinl₁) mem_append_of_mem_or_mem (or.inr this)
theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m := theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal) λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal)
(assume xeqa : x = a, by substvars; exact ainm) (suppose x = a, by substvars; exact ainm)
(assume xinl : x ∈ l, lsubm xinl) (suppose x ∈ l, lsubm this)
theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l := theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂), λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂) or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁) (suppose x ∈ l₁, l₁subl this)
(λ xinl₂ : x ∈ l₂, l₂subl xinl₂) (suppose x ∈ l₂, l₂subl this)
/- find -/ /- find -/
section section
@ -421,13 +420,13 @@ list.rec_on l
(assume P₁ : ¬x ∈ [], _) (assume P₁ : ¬x ∈ [], _)
(take y l, (take y l,
assume iH : ¬x ∈ l → find x l = length l, assume iH : ¬x ∈ l → find x l = length l,
assume P₁ : ¬x ∈ y::l, suppose ¬x ∈ y::l,
have P₂ : ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) P₁, have ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this,
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂), have ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not this),
calc calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
... = succ (find x l) : if_neg (and.elim_left P₃) ... = succ (find x l) : if_neg (and.elim_left this)
... = succ (length l) : {iH (and.elim_right P₃)} ... = succ (length l) : {iH (and.elim_right this)}
... = length (y::l) : !length_cons⁻¹) ... = length (y::l) : !length_cons⁻¹)
lemma find_le_length : ∀ {a} {l : list T}, find a l ≤ length l lemma find_le_length : ∀ {a} {l : list T}, find a l ≤ length l
@ -476,8 +475,8 @@ theorem nth_eq_some : ∀ {l : list T} {n : nat}, n < length l → Σ a : T, nth
| [] n h := absurd h !not_lt_zero | [] n h := absurd h !not_lt_zero
| (a::l) 0 h := ⟨a, rfl⟩ | (a::l) 0 h := ⟨a, rfl⟩
| (a::l) (succ n) h := | (a::l) (succ n) h :=
have aux : n < length l, from lt_of_succ_lt_succ h, have n < length l, from lt_of_succ_lt_succ h,
obtain (r : T) (req : nth l n = some r), from nth_eq_some aux, obtain (r : T) (req : nth l n = some r), from nth_eq_some this,
⟨r, by rewrite [nth_succ, req]⟩ ⟨r, by rewrite [nth_succ, req]⟩
open decidable open decidable
@ -566,10 +565,10 @@ list.induction_on l
exists.intro xs (qhead x xs), exists.intro xs (qhead x xs),
by rewrite aeqx; exact aux) by rewrite aeqx; exact aux)
(λ ainxs : a ∈ xs, (λ ainxs : a ∈ xs,
have ex : ∃l', xs ≈ a|l', from r ainxs, have ∃l', xs ≈ a|l', from r ainxs,
obtain (l' : list A) (q : xs ≈ a|l'), from ex, obtain (l' : list A) (q : xs ≈ a|l'), from this,
have q₂ : x::xs ≈ a | x::l', from qcons x q, have x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') q₂)) exists.intro (x::l') this))
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) := theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q take q, qeq.induction_on q
@ -578,20 +577,20 @@ take q, qeq.induction_on q
exists.intro [] (exists.intro t aux)) exists.intro [] (exists.intro t aux))
(λ b t t' q r, (λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r, obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂), have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
begin begin
rewrite [and.elim_right h, and.elim_left h], rewrite [and.elim_right h, and.elim_left h],
constructor, repeat reflexivity constructor, repeat reflexivity
end, end,
exists.intro (b::l₁) (exists.intro l₂ aux)) exists.intro (b::l₁) (exists.intro l₂ this))
theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u := theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l), λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have xinv : x ∈ v, from s (or.inr xinl), have x ∈ v, from s (or.inr xinl),
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv, have x ∈ a::u, from mem_cons_of_qeq q x this,
or.elim (eq_or_mem_of_mem_cons xinau) or.elim (eq_or_mem_of_mem_cons this)
(λ xeqa : x = a, by substvars; contradiction) (suppose x = a, by substvars; contradiction)
(λ xinu : x ∈ u, xinu) (suppose x ∈ u, this)
end qeq end qeq
end list end list

View file

@ -64,13 +64,13 @@ theorem mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∈ l₁ → a
assume p, perm.induction_on p assume p, perm.induction_on p
(λ h, h) (λ h, h)
(λ x l₁ l₂ p₁ r₁ i, or.elim (eq_or_mem_of_mem_cons i) (λ x l₁ l₂ p₁ r₁ i, or.elim (eq_or_mem_of_mem_cons i)
(assume aeqx : a = x, by rewrite aeqx; apply !mem_cons) (suppose a = x, by rewrite this; apply !mem_cons)
(assume ainl₁ : a ∈ l₁, or.inr (r₁ ainl₁))) (suppose a ∈ l₁, or.inr (r₁ this)))
(λ x y l ainyxl, or.elim (eq_or_mem_of_mem_cons ainyxl) (λ x y l ainyxl, or.elim (eq_or_mem_of_mem_cons ainyxl)
(assume aeqy : a = y, by rewrite aeqy; exact (or.inr !mem_cons)) (suppose a = y, by rewrite this; exact (or.inr !mem_cons))
(assume ainxl : a ∈ x::l, or.elim (eq_or_mem_of_mem_cons ainxl) (suppose a ∈ x::l, or.elim (eq_or_mem_of_mem_cons this)
(assume aeqx : a = x, or.inl aeqx) (suppose a = x, or.inl this)
(assume ainl : a ∈ l, or.inr (or.inr ainl)))) (suppose a ∈ l, or.inr (or.inr this))))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁)) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
theorem not_mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∉ l₁ → a ∉ l₂ := theorem not_mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∉ l₁ → a ∉ l₂ :=

View file

@ -31,7 +31,8 @@ definition decidable_prime [instance] (p : nat) : decidable (prime p) :=
decidable_of_decidable_of_iff _ (prime_ext_iff_prime p) decidable_of_decidable_of_iff _ (prime_ext_iff_prime p)
lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 := lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 :=
assume h, obtain h₁ h₂, from h, h₁ suppose prime p, obtain h₁ h₂, from this,
h₁
theorem gt_one_of_prime {p : } (primep : prime p) : p > 1 := theorem gt_one_of_prime {p : } (primep : prime p) : p > 1 :=
lt_of_succ_le (ge_two_of_prime primep) lt_of_succ_le (ge_two_of_prime primep)
@ -52,9 +53,9 @@ lemma prime_three : prime 3 :=
dec_trivial dec_trivial
lemma pred_prime_pos {p : nat} : prime p → pred p > 0 := lemma pred_prime_pos {p : nat} : prime p → pred p > 0 :=
assume h, suppose prime p,
have h₁ : p ≥ 2, from ge_two_of_prime h, have p ≥ 2, from ge_two_of_prime this,
lt_of_succ_le (pred_le_pred h₁) show pred p > 0, from lt_of_succ_le (pred_le_pred this)
lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p := lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p :=
assume h, succ_pred_of_pos (pos_of_prime h) assume h, succ_pred_of_pos (pos_of_prime h)
@ -127,8 +128,8 @@ obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from sub_prime_and_dvd th
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p, have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2), have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
have p ≥ n, from by_contradiction have p ≥ n, from by_contradiction
(assume h₁ : ¬ p ≥ n, (suppose ¬ p ≥ n,
have p < n, from lt_of_not_ge h₁, have p < n, from lt_of_not_ge this,
have p ≤ n + 1, from le_of_lt (lt.step this), have p ≤ n + 1, from le_of_lt (lt.step this),
have p m, from dvd_fact p_gt_0 this, have p m, from dvd_fact p_gt_0 this,
have p 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) this, have p 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) this,
@ -154,11 +155,11 @@ or_resolve_right H nc ▸ !gcd_dvd_right
theorem coprime_of_prime_of_not_dvd {p n : } (primep : prime p) (npdvdn : ¬ p n) : theorem coprime_of_prime_of_not_dvd {p n : } (primep : prime p) (npdvdn : ¬ p n) :
coprime p n := coprime p n :=
by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep nc)) by_contradiction (suppose ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep this))
theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n := theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n :=
assume pdvdn : p n, suppose p n,
have p gcd p n, from dvd_gcd !dvd.refl pdvdn, have p gcd p n, from dvd_gcd !dvd.refl this,
have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this, have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this,
have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this), have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this),
show false, from !not_succ_le_self this show false, from !not_succ_le_self this
@ -183,8 +184,8 @@ assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn)
lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n → p m p n := lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n → p m p n :=
λ h₁ h₂, by_cases λ h₁ h₂, by_cases
(assume h : p m, or.inl h) (suppose p m, or.inl this)
(assume h : ¬ p m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ h)) (suppose ¬ p m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ this))
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m
| 0 hp hd := | 0 hp hd :=

View file

@ -16,7 +16,7 @@
"alias" "help" "environment" "options" "precedence" "reserve" "alias" "help" "environment" "options" "precedence" "reserve"
"match" "infix" "infixl" "infixr" "notation" "postfix" "prefix" "match" "infix" "infixl" "infixr" "notation" "postfix" "prefix"
"tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix" "tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix"
"eval" "check" "end" "reveal" "this" "eval" "check" "end" "reveal" "this" "suppose"
"using" "namespace" "section" "fields" "find_decl" "using" "namespace" "section" "fields" "find_decl"
"attribute" "local" "set_option" "extends" "include" "omit" "classes" "attribute" "local" "set_option" "extends" "include" "omit" "classes"
"instances" "coercions" "metaclasses" "raw" "migrate" "replacing") "instances" "coercions" "metaclasses" "raw" "migrate" "replacing")

View file

@ -446,6 +446,37 @@ static expr parse_assert(parser & p, unsigned, expr const *, pos_info const & po
return parse_have_core(p, pos, none_expr(), true); return parse_have_core(p, pos, none_expr(), true);
} }
static expr parse_suppose(parser & p, unsigned, expr const *, pos_info const & pos) {
auto id_pos = p.pos();
name id;
expr prop;
if (p.curr_is_identifier()) {
id = p.get_name_val();
p.next();
if (p.curr_is_token(get_colon_tk())) {
p.next();
prop = p.parse_expr();
} else {
expr left = p.id_to_expr(id, id_pos);
id = get_this_tk();
unsigned rbp = 0;
while (rbp < p.curr_expr_lbp()) {
left = p.parse_led(left);
}
prop = left;
}
} else {
id = get_this_tk();
prop = p.parse_expr();
}
p.check_token_next(get_comma_tk(), "invalid 'suppose', ',' expected");
parser::local_scope scope(p);
expr l = p.save_pos(mk_local(id, prop), id_pos);
p.add_local(l);
expr body = p.parse_expr();
return p.save_pos(Fun(l, body), pos);
}
static name * H_show = nullptr; static name * H_show = nullptr;
static expr parse_show(parser & p, unsigned, expr const *, pos_info const & pos) { static expr parse_show(parser & p, unsigned, expr const *, pos_info const & pos) {
expr prop = p.parse_expr(); expr prop = p.parse_expr();
@ -630,6 +661,7 @@ parse_table init_nud_table() {
r = r.add({transition("by+", mk_ext_action_core(parse_by_plus))}, x0); r = r.add({transition("by+", mk_ext_action_core(parse_by_plus))}, x0);
r = r.add({transition("have", mk_ext_action(parse_have))}, x0); r = r.add({transition("have", mk_ext_action(parse_have))}, x0);
r = r.add({transition("assert", mk_ext_action(parse_assert))}, x0); r = r.add({transition("assert", mk_ext_action(parse_assert))}, x0);
r = r.add({transition("suppose", mk_ext_action(parse_suppose))}, x0);
r = r.add({transition("show", mk_ext_action(parse_show))}, x0); r = r.add({transition("show", mk_ext_action(parse_show))}, x0);
r = r.add({transition("obtain", mk_ext_action(parse_obtain))}, x0); r = r.add({transition("obtain", mk_ext_action(parse_obtain))}, x0);
r = r.add({transition("abstract", mk_ext_action(parse_nested_declaration))}, x0); r = r.add({transition("abstract", mk_ext_action(parse_nested_declaration))}, x0);

View file

@ -88,7 +88,7 @@ static char const * g_decreasing_unicode = "↓";
void init_token_table(token_table & t) { void init_token_table(token_table & t) {
pair<char const *, unsigned> builtin[] = pair<char const *, unsigned> builtin[] =
{{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"at", 0}, {"have", 0}, {"assert", 0}, {"show", 0}, {"obtain", 0}, {{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"at", 0}, {"have", 0}, {"assert", 0}, {"suppose", 0}, {"show", 0}, {"obtain", 0},
{"if", 0}, {"then", 0}, {"else", 0}, {"by", 0}, {"by+", 0}, {"hiding", 0}, {"replacing", 0}, {"renaming", 0}, {"if", 0}, {"then", 0}, {"else", 0}, {"by", 0}, {"by+", 0}, {"hiding", 0}, {"replacing", 0}, {"renaming", 0},
{"from", 0}, {"(", g_max_prec}, {")", 0}, {"{", g_max_prec}, {"}", 0}, {"_", g_max_prec}, {"from", 0}, {"(", g_max_prec}, {")", 0}, {"{", g_max_prec}, {"}", 0}, {"_", g_max_prec},
{"[", g_max_prec}, {"]", 0}, {"", g_max_prec}, {"", 0}, {".{", 0}, {"Type", g_max_prec}, {"[", g_max_prec}, {"]", 0}, {"", g_max_prec}, {"", 0}, {".{", 0}, {"Type", g_max_prec},