fix(library/init/function): fix typo

This commit is contained in:
Jeremy Avigad 2015-12-21 15:44:44 -05:00
parent baf11d0018
commit 8ccafc4267
4 changed files with 4 additions and 4 deletions

View file

@ -339,6 +339,6 @@ namespace vector
| (mk f g l r) n :=
mk (map f) (map g)
begin intros, rewrite [map_map, id_of_left_inverse l, map_id], reflexivity end
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], reflexivity end
begin intros, rewrite [map_map, id_of_right_inverse r, map_id], reflexivity end
end
end vector

View file

@ -563,7 +563,7 @@ definition list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B
| (mk f g l r) :=
mk (map f) (map g)
begin intros, rewrite [map_map, id_of_left_inverse l, map_id], try reflexivity end
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], try reflexivity end
begin intros, rewrite [map_map, id_of_right_inverse r, map_id], try reflexivity end
private definition to_nat : list nat → nat
| [] := 0

View file

@ -622,7 +622,7 @@ lemma stream_equiv_of_equiv {A B : Type} : A ≃ B → stream A ≃ stream B
| (mk f g l r) :=
mk (map f) (map g)
begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id] end
begin intros, rewrite [map_map, id_of_right_inverse r, map_id] end
end
definition lex (rel : A → A → Prop) (s₁ s₂ : stream A) : Prop :=

View file

@ -105,7 +105,7 @@ definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, left_inv
-- g is a right inverse to f
definition right_inverse (g : B → A) (f : A → B) : Prop := left_inverse f g
definition id_of_righ_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id :=
definition id_of_right_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id :=
assume h, funext h
definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, right_inverse finv f