feat(library/hott) almost completed portin UnivalenceImpliesFunext.v

This commit is contained in:
Jakob von Raumer 2014-11-12 17:37:19 -05:00 committed by Leonardo de Moura
parent df4a8db23d
commit 8dfa78e070

View file

@ -2,10 +2,10 @@
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import hott.axioms.ua hott.equiv hott.equiv_precomp
import data.prod data.sigma
import hott.axioms.ua hott.equiv hott.equiv_precomp hott.funext_varieties
import data.prod data.sigma data.unit
open path function prod sigma
open path function prod sigma truncation Equiv unit
-- First, define an axiom free variant of Univalence
definition ua_type := Π (A B : Type), IsEquiv (equiv_path A B)
@ -46,8 +46,8 @@ context
(λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp))))
theorem univalence_implies_funext_nondep (A B : Type)
: Π (f g : A → B), f g → f ≈ g
theorem ua_implies_funext_nondep {A B : Type}
: Π {f g : A → B}, f g → f ≈ g
:= (λ (f g : A → B) (p : f g),
let d := λ (x : A), dpair (f x , f x) idp in
let e := λ (x : A), dpair (f x , g x) (p x) in
@ -70,12 +70,36 @@ context
end
context
universe l
parameters {ua1 ua2 : ua_type.{1}}
-- Now we use this to prove weak funext, which as we know
-- implies (with dependent eta) also the strong dependent funext.
theorem ua_implies_weak_funext : weak_funext
:= (λ A P allcontr,
let U := (λ (x : A), unit) in
have pequiv : Πx, P x ≃ U x,
from (λ x, @equiv_contr_unit (P x) (allcontr x)),
have psim : Πx, P x ≈ U x,
from (λ x, @IsEquiv.inv _ _
(equiv_path.{1} (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)),
have p : P ≈ U,
from ua_implies_funext_nondep psim,
have tU' : is_contr (A → unit),
from is_contr.mk (λ x, ⋆)
(λ f, ua_implies_funext_nondep
(λ x, unit.rec_on (f x) idp)),
have tU : is_contr (Πx, U x),
from tU',
have tlast : is_contr (Πx, P x),
from path.transport _ (p⁻¹) tU,
tlast
)
end
-- In the following we will proof function extensionality using the univalence axiom
definition funext_from_ua {A : Type} {P : A → Type} (f g : Πx, P x)
: IsEquiv (@apD10 A P f g) :=
sorry
-- TODO: check out why I have to generalize on A and P here
definition ua_implies_funext_type {ua : ua_type.{1}} : @funext_type :=
(λ A P, weak_funext_implies_funext (@ua_implies_weak_funext ua))