fix(library/data/real/{basic,division,order}: use notation for 0 and 1
These changes were needed because e.g. real.add_zero was "x + zero = x", and rewrite would not match it to a goal "t + 0". The fix was a lot harder than I expected. At first, migrate failed with resource errors. In the end, what worked was this: I defined the coercion from num to real directly (rather than infer num -> nat -> int -> rat -> real). I still don't understand what the issues are, though. There are subtle issues with numerals and coercions and migrate. (We are not alone. Isabelle also suffers from the fact that there are too many "zero"s and "one"s.)
This commit is contained in:
parent
79b77b1011
commit
92af727daf
4 changed files with 26 additions and 25 deletions
|
@ -512,7 +512,7 @@ section migrate_algebra
|
||||||
add_comm := add.comm,
|
add_comm := add.comm,
|
||||||
mul := mul,
|
mul := mul,
|
||||||
mul_assoc := mul.assoc,
|
mul_assoc := mul.assoc,
|
||||||
one := (of_num 1),
|
one := 1,
|
||||||
one_mul := one_mul,
|
one_mul := one_mul,
|
||||||
mul_one := mul_one,
|
mul_one := mul_one,
|
||||||
left_distrib := mul.left_distrib,
|
left_distrib := mul.left_distrib,
|
||||||
|
|
|
@ -1029,10 +1029,17 @@ definition neg (x : ℝ) : ℝ :=
|
||||||
quot.sound (rneg_well_defined Hab)))
|
quot.sound (rneg_well_defined Hab)))
|
||||||
prefix [priority real.prio] `-` := neg
|
prefix [priority real.prio] `-` := neg
|
||||||
|
|
||||||
definition zero : ℝ := quot.mk r_zero
|
open rat -- no coercions before
|
||||||
|
|
||||||
|
definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (s.r_const a)
|
||||||
|
definition of_num [coercion] [reducible] (n : num) : ℝ := of_rat (rat.of_num n)
|
||||||
|
|
||||||
|
--definition zero : ℝ := 0
|
||||||
|
--definition one : ℝ := 1
|
||||||
|
--definition zero : ℝ := quot.mk r_zero
|
||||||
--notation 0 := zero
|
--notation 0 := zero
|
||||||
|
|
||||||
definition one : ℝ := quot.mk r_one
|
--definition one : ℝ := quot.mk r_one
|
||||||
|
|
||||||
theorem add_comm (x y : ℝ) : x + y = y + x :=
|
theorem add_comm (x y : ℝ) : x + y = y + x :=
|
||||||
quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t))
|
quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t))
|
||||||
|
@ -1040,13 +1047,13 @@ theorem add_comm (x y : ℝ) : x + y = y + x :=
|
||||||
theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) :=
|
theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) :=
|
||||||
quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u))
|
quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u))
|
||||||
|
|
||||||
theorem zero_add (x : ℝ) : zero + x = x :=
|
theorem zero_add (x : ℝ) : 0 + x = x :=
|
||||||
quot.induction_on x (λ s, quot.sound (r_zero_add s))
|
quot.induction_on x (λ s, quot.sound (r_zero_add s))
|
||||||
|
|
||||||
theorem add_zero (x : ℝ) : x + zero = x :=
|
theorem add_zero (x : ℝ) : x + 0 = x :=
|
||||||
quot.induction_on x (λ s, quot.sound (r_add_zero s))
|
quot.induction_on x (λ s, quot.sound (r_add_zero s))
|
||||||
|
|
||||||
theorem neg_cancel (x : ℝ) : -x + x = zero :=
|
theorem neg_cancel (x : ℝ) : -x + x = 0 :=
|
||||||
quot.induction_on x (λ s, quot.sound (r_neg_cancel s))
|
quot.induction_on x (λ s, quot.sound (r_neg_cancel s))
|
||||||
|
|
||||||
theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) :=
|
theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) :=
|
||||||
|
@ -1055,10 +1062,10 @@ theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) :=
|
||||||
theorem mul_comm (x y : ℝ) : x * y = y * x :=
|
theorem mul_comm (x y : ℝ) : x * y = y * x :=
|
||||||
quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t))
|
quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t))
|
||||||
|
|
||||||
theorem one_mul (x : ℝ) : one * x = x :=
|
theorem one_mul (x : ℝ) : 1 * x = x :=
|
||||||
quot.induction_on x (λ s, quot.sound (r_one_mul s))
|
quot.induction_on x (λ s, quot.sound (r_one_mul s))
|
||||||
|
|
||||||
theorem mul_one (x : ℝ) : x * one = x :=
|
theorem mul_one (x : ℝ) : x * 1 = x :=
|
||||||
quot.induction_on x (λ s, quot.sound (r_mul_one s))
|
quot.induction_on x (λ s, quot.sound (r_mul_one s))
|
||||||
|
|
||||||
theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z :=
|
theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z :=
|
||||||
|
@ -1067,8 +1074,8 @@ theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z :=
|
||||||
theorem distrib_l (x y z : ℝ) : (x + y) * z = x * z + y * z :=
|
theorem distrib_l (x y z : ℝ) : (x + y) * z = x * z + y * z :=
|
||||||
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
|
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
|
||||||
|
|
||||||
theorem zero_ne_one : ¬ zero = one :=
|
theorem zero_ne_one : ¬ (0 : ℝ) = 1 :=
|
||||||
take H : zero = one,
|
take H : 0 = 1,
|
||||||
absurd (quot.exact H) (r_zero_nequiv_one)
|
absurd (quot.exact H) (r_zero_nequiv_one)
|
||||||
|
|
||||||
protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
||||||
|
@ -1076,7 +1083,7 @@ protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
||||||
fapply algebra.comm_ring.mk,
|
fapply algebra.comm_ring.mk,
|
||||||
exact add,
|
exact add,
|
||||||
exact add_assoc,
|
exact add_assoc,
|
||||||
exact zero,
|
exact of_num 0,
|
||||||
exact zero_add,
|
exact zero_add,
|
||||||
exact add_zero,
|
exact add_zero,
|
||||||
exact neg,
|
exact neg,
|
||||||
|
@ -1084,7 +1091,7 @@ protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
||||||
exact add_comm,
|
exact add_comm,
|
||||||
exact mul,
|
exact mul,
|
||||||
exact mul_assoc,
|
exact mul_assoc,
|
||||||
apply one,
|
apply of_num 1,
|
||||||
apply one_mul,
|
apply one_mul,
|
||||||
apply mul_one,
|
apply mul_one,
|
||||||
apply distrib,
|
apply distrib,
|
||||||
|
@ -1092,10 +1099,6 @@ protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
||||||
apply mul_comm
|
apply mul_comm
|
||||||
end
|
end
|
||||||
|
|
||||||
open rat -- no coercions before
|
|
||||||
|
|
||||||
definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (s.r_const a)
|
|
||||||
|
|
||||||
theorem of_rat_add (a b : ℚ) : of_rat a + of_rat b = of_rat (a + b) :=
|
theorem of_rat_add (a b : ℚ) : of_rat a + of_rat b = of_rat (a + b) :=
|
||||||
quot.sound (s.r_add_consts a b)
|
quot.sound (s.r_add_consts a b)
|
||||||
|
|
||||||
|
|
|
@ -584,10 +584,10 @@ postfix [priority real.prio] `⁻¹` := inv
|
||||||
theorem le_total (x y : ℝ) : x ≤ y ∨ y ≤ x :=
|
theorem le_total (x y : ℝ) : x ≤ y ∨ y ≤ x :=
|
||||||
quot.induction_on₂ x y (λ s t, s.r_le_total s t)
|
quot.induction_on₂ x y (λ s t, s.r_le_total s t)
|
||||||
|
|
||||||
theorem mul_inv' (x : ℝ) : x ≢ zero → x * x⁻¹ = one :=
|
theorem mul_inv' (x : ℝ) : x ≢ 0 → x * x⁻¹ = 1 :=
|
||||||
quot.induction_on x (λ s H, quot.sound (s.r_mul_inv s H))
|
quot.induction_on x (λ s H, quot.sound (s.r_mul_inv s H))
|
||||||
|
|
||||||
theorem inv_mul' (x : ℝ) : x ≢ zero → x⁻¹ * x = one :=
|
theorem inv_mul' (x : ℝ) : x ≢ 0 → x⁻¹ * x = 1 :=
|
||||||
by rewrite real.mul_comm; apply mul_inv'
|
by rewrite real.mul_comm; apply mul_inv'
|
||||||
|
|
||||||
theorem neq_of_sep {x y : ℝ} (H : x ≢ y) : ¬ x = y :=
|
theorem neq_of_sep {x y : ℝ} (H : x ≢ y) : ¬ x = y :=
|
||||||
|
@ -599,11 +599,11 @@ theorem sep_of_neq {x y : ℝ} : ¬ x = y → x ≢ y :=
|
||||||
theorem sep_is_neq (x y : ℝ) : (x ≢ y) = (¬ x = y) :=
|
theorem sep_is_neq (x y : ℝ) : (x ≢ y) = (¬ x = y) :=
|
||||||
propext (iff.intro neq_of_sep sep_of_neq)
|
propext (iff.intro neq_of_sep sep_of_neq)
|
||||||
|
|
||||||
theorem mul_inv (x : ℝ) : x ≠ zero → x * x⁻¹ = one := !sep_is_neq ▸ !mul_inv'
|
theorem mul_inv (x : ℝ) : x ≠ 0 → x * x⁻¹ = 1 := !sep_is_neq ▸ !mul_inv'
|
||||||
|
|
||||||
theorem inv_mul (x : ℝ) : x ≠ zero → x⁻¹ * x = one := !sep_is_neq ▸ !inv_mul'
|
theorem inv_mul (x : ℝ) : x ≠ 0 → x⁻¹ * x = 1 := !sep_is_neq ▸ !inv_mul'
|
||||||
|
|
||||||
theorem inv_zero : zero⁻¹ = zero := quot.sound (s.r_inv_zero)
|
theorem inv_zero : (0 : ℝ)⁻¹ = 0 := quot.sound (s.r_inv_zero)
|
||||||
|
|
||||||
theorem lt_or_eq_of_le (x y : ℝ) : x ≤ y → x < y ∨ x = y :=
|
theorem lt_or_eq_of_le (x y : ℝ) : x ≤ y → x < y ∨ x = y :=
|
||||||
quot.induction_on₂ x y (λ s t H, or.elim (s.r_lt_or_equiv_of_le s t H)
|
quot.induction_on₂ x y (λ s t H, or.elim (s.r_lt_or_equiv_of_le s t H)
|
||||||
|
|
|
@ -17,8 +17,6 @@ local notation 0 := rat.of_num 0
|
||||||
local notation 1 := rat.of_num 1
|
local notation 1 := rat.of_num 1
|
||||||
local notation 2 := subtype.tag (of_num 2) dec_trivial
|
local notation 2 := subtype.tag (of_num 2) dec_trivial
|
||||||
|
|
||||||
----------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
namespace s
|
namespace s
|
||||||
definition pos (s : seq) := ∃ n : ℕ+, n⁻¹ < (s n)
|
definition pos (s : seq) := ∃ n : ℕ+, n⁻¹ < (s n)
|
||||||
|
|
||||||
|
@ -1026,8 +1024,8 @@ definition lt (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_lt a b) s.r_lt_wel
|
||||||
infix [priority real.prio] `<` := lt
|
infix [priority real.prio] `<` := lt
|
||||||
|
|
||||||
definition le (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined
|
definition le (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined
|
||||||
infix [priority real.prio] `≤` := le
|
|
||||||
infix [priority real.prio] `<=` := le
|
infix [priority real.prio] `<=` := le
|
||||||
|
infix [priority real.prio] `≤` := le
|
||||||
|
|
||||||
definition gt [reducible] (a b : ℝ) := lt b a
|
definition gt [reducible] (a b : ℝ) := lt b a
|
||||||
definition ge [reducible] (a b : ℝ) := le b a
|
definition ge [reducible] (a b : ℝ) := le b a
|
||||||
|
@ -1084,7 +1082,7 @@ theorem add_lt_add_left_var (x y z : ℝ) : x < y → z + x < z + y :=
|
||||||
theorem add_lt_add_left (x y : ℝ) : x < y → ∀ z : ℝ, z + x < z + y :=
|
theorem add_lt_add_left (x y : ℝ) : x < y → ∀ z : ℝ, z + x < z + y :=
|
||||||
take H z, add_lt_add_left_var x y z H
|
take H z, add_lt_add_left_var x y z H
|
||||||
|
|
||||||
theorem zero_lt_one : zero < one := s.r_zero_lt_one
|
theorem zero_lt_one : (0 : ℝ) < (1 : ℝ) := s.r_zero_lt_one
|
||||||
|
|
||||||
theorem le_of_lt_or_eq (x y : ℝ) : x < y ∨ x = y → x ≤ y :=
|
theorem le_of_lt_or_eq (x y : ℝ) : x < y ∨ x = y → x ≤ y :=
|
||||||
(quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin
|
(quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin
|
||||||
|
|
Loading…
Reference in a new issue