feat(library/data/vector): add theorems

This commit is contained in:
Leonardo de Moura 2015-03-08 22:51:11 -07:00
parent f6cd604a44
commit a628836f28

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: data.vector Module: data.vector
Author: Floris van Doorn, Leonardo de Moura Author: Floris van Doorn, Leonardo de Moura
-/ -/
import data.nat.basic import data.nat data.list
open nat prod open nat prod
inductive vector (A : Type) : nat → Type := inductive vector (A : Type) : nat → Type :=
@ -82,18 +82,38 @@ namespace vector
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl rfl
-- Remark: why do we need to provide indices?
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m) definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
| 0 m nil w := w | 0 m nil w := w
| (succ n) m (a::v) w := a :: (append v w) | (succ n) m (a::v) w := a :: (append v w)
theorem append_nil {n : nat} (v : vector A n) : append nil v = v := theorem nil_append {n : nat} (v : vector A n) : append nil v = v :=
rfl rfl
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) : theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
append (h::t) v = h :: (append t v) := append (h::t) v = h :: (append t v) :=
rfl rfl
theorem append_nil : Π {n : nat} (v : vector A n), append v nil == v
| zero nil := !heq.refl
| (succ n) (h::t) :=
begin
change (h :: append t nil == h :: t),
have H₁ : append t nil == t, from append_nil t,
revert H₁, generalize (append t nil),
rewrite [-add_eq_addl, add_zero],
intros (w, H₁),
rewrite [heq.to_eq H₁],
apply heq.refl
end
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
| zero m nil w := rfl
| (succ n) m (h :: t) w :=
begin
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
rewrite map_append
end
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| unzip nil := (nil, nil) | unzip nil := (nil, nil)
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) | unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
@ -121,7 +141,7 @@ namespace vector
| (succ n) (a::va) (b::vb) := calc | (succ n) (a::va) (b::vb) := calc
unzip (zip (a :: va) (b :: vb)) unzip (zip (a :: va) (b :: vb))
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl = (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : {unzip_zip va vb} ... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
... = (a :: va, b :: vb) : rfl ... = (a :: va, b :: vb) : rfl
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
@ -129,7 +149,7 @@ namespace vector
| (succ n) ((a, b) :: v) := calc | (succ n) ((a, b) :: v) := calc
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v))) zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl = (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
... = (a, b) :: v : {zip_unzip v} ... = (a, b) :: v : by rewrite zip_unzip
/- Concat -/ /- Concat -/
@ -148,4 +168,68 @@ namespace vector
| (succ n) (b::v) a := calc | (succ n) (b::v) a := calc
last (concat (b::v) a) = last (concat v a) : rfl last (concat (b::v) a) = last (concat v a) : rfl
... = a : last_concat v a ... = a : last_concat v a
/- Reverse -/
definition reverse : Π {n : nat}, vector A n → vector A n
| zero nil := nil
| (succ n) (x :: xs) := concat (reverse xs) x
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
| zero nil a := rfl
| (succ n) (x :: xs) a :=
begin
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
rewrite reverse_concat
end
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
| zero nil := rfl
| (succ n) (x :: xs) :=
begin
change (reverse (concat (reverse xs) x) = x :: xs),
rewrite [reverse_concat, reverse_reverse]
end
/- list <-> vector -/
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
| list.nil := nil
| (list.cons a l) := a :: (of_list l)
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
| zero nil := list.nil
| (succ n) (a :: vs) := list.cons a (to_list vs)
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
| list.nil := rfl
| (list.cons a l) :=
begin
change (list.cons a (to_list (of_list l)) = list.cons a l),
rewrite to_list_of_list
end
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
| zero nil := rfl
| (succ n) (a :: vs) :=
begin
change (succ (list.length (to_list vs)) = succ n),
rewrite length_to_list
end
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
| zero nil := !heq.refl
| (succ n) (a :: vs) :=
begin
change (a :: of_list (to_list vs) == a :: vs),
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
revert H₁,
generalize (of_list (to_list vs)),
rewrite length_to_list at *,
intro vs', intro H,
have H₂ : vs' = vs, from heq.to_eq H,
rewrite H₂,
apply heq.refl
end
end vector end vector