feat(hott/types): a bit of cleanup
This commit is contained in:
parent
d4a929febb
commit
a79a3043ed
4 changed files with 9 additions and 9 deletions
|
@ -22,7 +22,7 @@ namespace is_equiv
|
|||
definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) :=
|
||||
is_contr.mk
|
||||
(fiber.mk (f⁻¹ b) (retr f b))
|
||||
(λz, fiber.rec_on z (λa p, fiber.eq_mk ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
|
||||
(λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
|
||||
retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left
|
||||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con
|
||||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.fiber
|
||||
|
@ -9,7 +9,7 @@ Ported from Coq HoTT
|
|||
Theorems about fibers
|
||||
-/
|
||||
|
||||
import types.sigma types.eq
|
||||
import .sigma .eq
|
||||
|
||||
structure fiber {A B : Type} (f : A → B) (b : B) :=
|
||||
(point : A)
|
||||
|
@ -44,8 +44,8 @@ namespace fiber
|
|||
{apply (ap (λx, x = _)), rewrite transport_eq_Fl}
|
||||
end
|
||||
|
||||
definition eq_mk {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y)
|
||||
: x = y :=
|
||||
definition fiber_eq {x y : fiber f b} (p : point x = point y)
|
||||
(q : point_eq x = ap f p ⬝ point_eq y) : x = y :=
|
||||
to_inv !equiv_fiber_eq ⟨p, q⟩
|
||||
|
||||
end fiber
|
||||
|
|
|
@ -57,9 +57,9 @@ namespace pi
|
|||
|
||||
/- A special case of [transport_pi] where the type [B] does not depend on [A],
|
||||
and so it is just a fixed type [B]. -/
|
||||
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b)
|
||||
: Π(b : A'), (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
|
||||
eq.rec_on p (λx, idp)
|
||||
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
|
||||
: (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
|
||||
eq.rec_on p idp
|
||||
|
||||
/- Maps on paths -/
|
||||
|
||||
|
|
|
@ -200,7 +200,7 @@ namespace sigma
|
|||
-- "rewrite retr (g (f⁻¹ a'))"
|
||||
apply concat, apply (ap (λx, (transport B' (retr f a') x))), apply (retr (g (f⁻¹ a'))),
|
||||
show retr f a' ▹ ((retr f a')⁻¹ ▹ b') = b',
|
||||
from tr_inv_tr B' (retr f a') b'
|
||||
from tr_inv_tr _ (retr f a') b'
|
||||
end
|
||||
begin
|
||||
intro u,
|
||||
|
|
Loading…
Reference in a new issue