feat(hott/types): a bit of cleanup

This commit is contained in:
Floris van Doorn 2015-04-19 15:58:13 -04:00 committed by Leonardo de Moura
parent d4a929febb
commit a79a3043ed
4 changed files with 9 additions and 9 deletions

View file

@ -22,7 +22,7 @@ namespace is_equiv
definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) :=
is_contr.mk
(fiber.mk (f⁻¹ b) (retr f b))
(λz, fiber.rec_on z (λa p, fiber.eq_mk ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
(λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj

View file

@ -1,5 +1,5 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.fiber
@ -9,7 +9,7 @@ Ported from Coq HoTT
Theorems about fibers
-/
import types.sigma types.eq
import .sigma .eq
structure fiber {A B : Type} (f : A → B) (b : B) :=
(point : A)
@ -44,8 +44,8 @@ namespace fiber
{apply (ap (λx, x = _)), rewrite transport_eq_Fl}
end
definition eq_mk {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y)
: x = y :=
definition fiber_eq {x y : fiber f b} (p : point x = point y)
(q : point_eq x = ap f p ⬝ point_eq y) : x = y :=
to_inv !equiv_fiber_eq ⟨p, q⟩
end fiber

View file

@ -57,9 +57,9 @@ namespace pi
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b)
: Π(b : A'), (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
eq.rec_on p (λx, idp)
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
: (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
eq.rec_on p idp
/- Maps on paths -/

View file

@ -200,7 +200,7 @@ namespace sigma
-- "rewrite retr (g (f⁻¹ a'))"
apply concat, apply (ap (λx, (transport B' (retr f a') x))), apply (retr (g (f⁻¹ a'))),
show retr f a' ▹ ((retr f a')⁻¹ ▹ b') = b',
from tr_inv_tr B' (retr f a') b'
from tr_inv_tr _ (retr f a') b'
end
begin
intro u,