feat(library/algebra/field): define discrete field
This commit is contained in:
parent
eef2e99a1c
commit
a8cf58d97c
1 changed files with 55 additions and 28 deletions
|
@ -30,32 +30,26 @@ section division_ring
|
||||||
definition divide (a b : A) : A := a * b⁻¹
|
definition divide (a b : A) : A := a * b⁻¹
|
||||||
infix `/` := divide
|
infix `/` := divide
|
||||||
|
|
||||||
|
-- only in this file
|
||||||
|
local attribute divide [reducible]
|
||||||
|
|
||||||
theorem mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
|
theorem mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
|
||||||
division_ring.mul_inv_cancel H
|
division_ring.mul_inv_cancel H
|
||||||
|
|
||||||
theorem inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
theorem inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||||||
division_ring.inv_mul_cancel H
|
division_ring.inv_mul_cancel H
|
||||||
|
|
||||||
theorem inv_eq_one_div (H : a ≠ 0) : a⁻¹ = 1 / a :=
|
theorem inv_eq_one_div : a⁻¹ = 1 / a := !one_mul⁻¹
|
||||||
symm (calc
|
|
||||||
1 / a = 1 * a⁻¹ : rfl --div_is_mul _ _ H
|
|
||||||
... = a⁻¹ : one_mul
|
|
||||||
)
|
|
||||||
|
|
||||||
theorem mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
|
theorem mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
|
||||||
calc
|
by rewrite [-inv_eq_one_div, (mul_inv_cancel H)]
|
||||||
a * (1 / a) = a * a⁻¹ : inv_eq_one_div H
|
|
||||||
... = 1 : mul_inv_cancel H
|
|
||||||
|
|
||||||
theorem one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
|
theorem one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
|
||||||
calc
|
calc
|
||||||
(1 / a) * a = a⁻¹ * a : inv_eq_one_div H
|
(1 / a) * a = a⁻¹ * a : inv_eq_one_div
|
||||||
... = 1 : inv_mul_cancel H
|
... = 1 : inv_mul_cancel H
|
||||||
|
|
||||||
theorem div_self (H : a ≠ 0) : a / a = 1 :=
|
theorem div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
|
||||||
calc
|
|
||||||
a / a = a * a⁻¹ : rfl
|
|
||||||
... = 1 : mul_inv_cancel H
|
|
||||||
|
|
||||||
theorem mul_div_assoc (Hc : c ≠ 0) : (a * b) / c = a * (b / c) :=
|
theorem mul_div_assoc (Hc : c ≠ 0) : (a * b) / c = a * (b / c) :=
|
||||||
eq.symm (calc
|
eq.symm (calc
|
||||||
|
@ -79,8 +73,8 @@ section division_ring
|
||||||
|
|
||||||
theorem div_one : a / 1 = a :=
|
theorem div_one : a / 1 = a :=
|
||||||
calc
|
calc
|
||||||
a / 1 = a * 1⁻¹ : rfl
|
a / 1 = /- a * 1⁻¹ : rfl
|
||||||
... = a * 1 : inv_one_is_one
|
... = -/ a * 1 : inv_one_is_one
|
||||||
... = a : mul_one
|
... = a : mul_one
|
||||||
|
|
||||||
-- note: integral domain has a "mul_ne_zero". When we get to "field", show it is an
|
-- note: integral domain has a "mul_ne_zero". When we get to "field", show it is an
|
||||||
|
@ -200,10 +194,10 @@ section division_ring
|
||||||
theorem mul_inv (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
theorem mul_inv (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||||||
have H1 : b * a ≠ 0, from mul_ne_zero' Hb Ha,
|
have H1 : b * a ≠ 0, from mul_ne_zero' Hb Ha,
|
||||||
eq.symm (calc
|
eq.symm (calc
|
||||||
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div Ha
|
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div
|
||||||
... = (1 / a) * (1 / b) : inv_eq_one_div Hb
|
... = (1 / a) * (1 / b) : inv_eq_one_div
|
||||||
... = (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
... = (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||||||
... = (b * a)⁻¹ : inv_eq_one_div H1)
|
... = (b * a)⁻¹ : inv_eq_one_div)
|
||||||
|
|
||||||
theorem mul_div_cancel (Hb : b ≠ 0) : a * b / b = a :=
|
theorem mul_div_cancel (Hb : b ≠ 0) : a * b / b = a :=
|
||||||
calc
|
calc
|
||||||
|
@ -265,23 +259,23 @@ section field
|
||||||
|
|
||||||
-- I think of "div_cancel" has being something like a * b / b = a or a / b * b = a. The name
|
-- I think of "div_cancel" has being something like a * b / b = a or a / b * b = a. The name
|
||||||
-- I chose is clunky, but it has the right prefix
|
-- I chose is clunky, but it has the right prefix
|
||||||
theorem div_mul_self_left (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
|
theorem div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
|
||||||
have Ha : a ≠ 0, from and.left (mul_ne_zero_imp_ne_zero H),
|
have Ha : a ≠ 0, from and.left (mul_ne_zero_imp_ne_zero H),
|
||||||
symm (calc
|
symm (calc
|
||||||
1 / b = 1 * (1 / b) : one_mul
|
1 / b = 1 * (1 / b) : one_mul
|
||||||
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel Ha
|
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel Ha
|
||||||
... = a * (a⁻¹ * (1 / b)) : mul.assoc
|
... = a * (a⁻¹ * (1 / b)) : mul.assoc
|
||||||
... = a * ((1 / a) * (1 / b)) :inv_eq_one_div Ha
|
... = a * ((1 / a) * (1 / b)) :inv_eq_one_div
|
||||||
... = a * (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
... = a * (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||||||
... = a * (1 / (a * b)) : mul.comm
|
... = a * (1 / (a * b)) : mul.comm
|
||||||
... = a * (a * b)⁻¹ : inv_eq_one_div H
|
... = a * (a * b)⁻¹ : inv_eq_one_div
|
||||||
... = a / (a * b) : rfl)
|
... = a / (a * b) : rfl)
|
||||||
|
|
||||||
theorem div_mul_self_right (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
|
theorem div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
|
||||||
have H1 : b * a ≠ 0, from mul_ne_zero_comm H,
|
have H1 : b * a ≠ 0, from mul_ne_zero_comm H,
|
||||||
calc
|
calc
|
||||||
(b / (a * b)) = (b / (b * a)) : mul.comm
|
(b / (a * b)) = (b / (b * a)) : mul.comm
|
||||||
... = 1 / a : div_mul_self_left Ha H1
|
... = 1 / a : div_mul_right Ha H1
|
||||||
|
|
||||||
theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
|
theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
|
||||||
calc
|
calc
|
||||||
|
@ -296,12 +290,12 @@ section field
|
||||||
theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
|
theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
|
||||||
have H : a * b ≠ 0, from (mul_ne_zero' Ha Hb),
|
have H : a * b ≠ 0, from (mul_ne_zero' Ha Hb),
|
||||||
symm (calc
|
symm (calc
|
||||||
(a + b) / (a * b) = (a + b) * (a * b)⁻¹ : rfl
|
(a + b) / (a * b)/- = (a + b) * (a * b)⁻¹ : rfl
|
||||||
... = a * (a * b)⁻¹ + b * (a * b)⁻¹ : right_distrib
|
...-/ = a * (a * b)⁻¹ + b * (a * b)⁻¹ : right_distrib
|
||||||
... = a / (a * b) + b * (a * b)⁻¹ : rfl
|
... = a / (a * b) + b * (a * b)⁻¹ : rfl
|
||||||
... = 1 / b + b * (a * b)⁻¹ : div_mul_self_left Hb H
|
... = 1 / b + b * (a * b)⁻¹ : div_mul_right Hb H
|
||||||
... = 1 / b + b / (a * b) : rfl
|
... = 1 / b + b / (a * b) : rfl
|
||||||
... = 1 / b + 1 / a : div_mul_self_right Ha H
|
... = 1 / b + 1 / a : div_mul_left Ha H
|
||||||
... = 1 / a + 1 / b : add.comm)
|
... = 1 / a + 1 / b : add.comm)
|
||||||
|
|
||||||
theorem div_mul_div (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) :=
|
theorem div_mul_div (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) :=
|
||||||
|
@ -369,4 +363,37 @@ section field
|
||||||
|
|
||||||
end field
|
end field
|
||||||
|
|
||||||
|
structure discrete_field [class] (A : Type) extends field A :=
|
||||||
|
(decidable_equality : ∀x y : A, decidable (x = y))
|
||||||
|
|
||||||
|
section discrete_field
|
||||||
|
variable [s : discrete_field A]
|
||||||
|
include s
|
||||||
|
variables {a b c : A}
|
||||||
|
|
||||||
|
definition decidable_eq [instance] (a b : A) : decidable (a = b) :=
|
||||||
|
@discrete_field.decidable_equality A s a b
|
||||||
|
|
||||||
|
theorem discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
|
||||||
|
(x y : A) (H : x * y = 0) : x = 0 ∨ y = 0 :=
|
||||||
|
decidable.by_cases
|
||||||
|
(assume H : x = 0, or.inl H)
|
||||||
|
(assume H1 : x ≠ 0,
|
||||||
|
or.inr (calc
|
||||||
|
y = 1 * y : one_mul
|
||||||
|
... = x⁻¹ * x * y : inv_mul_cancel H1
|
||||||
|
... = x⁻¹ * (x * y) : mul.assoc
|
||||||
|
... = x⁻¹ * 0 : H
|
||||||
|
... = 0 : mul_zero))
|
||||||
|
|
||||||
|
definition discrete_field.to_integral_domain [instance] [reducible] [coercion] :
|
||||||
|
integral_domain A :=
|
||||||
|
⦃ integral_domain, s,
|
||||||
|
eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄
|
||||||
|
|
||||||
|
example (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||||||
|
@mul_ne_zero A s a b H1 H2
|
||||||
|
|
||||||
|
end discrete_field
|
||||||
|
|
||||||
end algebra
|
end algebra
|
||||||
|
|
Loading…
Reference in a new issue