fix(init/equiv): make transport not an instance

This commit is contained in:
Floris van Doorn 2015-10-27 17:43:06 -04:00 committed by Leonardo de Moura
parent f2d07ca23c
commit aa9f32a3bd
2 changed files with 5 additions and 3 deletions

View file

@ -41,7 +41,7 @@ namespace is_equiv
protected abbreviation mk [constructor] := @is_equiv.mk' A B f protected abbreviation mk [constructor] := @is_equiv.mk' A B f
-- The identity function is an equivalence. -- The identity function is an equivalence.
definition is_equiv_id (A : Type) : (is_equiv (id : A → A)) := definition is_equiv_id [instance] (A : Type) : (is_equiv (id : A → A)) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp) is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence. -- The composition of two equivalences is, again, an equivalence.
@ -218,7 +218,7 @@ namespace is_equiv
end end
--Transporting is an equivalence --Transporting is an equivalence
definition is_equiv_tr [instance] [constructor] {A : Type} (P : A → Type) {x y : A} definition is_equiv_tr [constructor] {A : Type} (P : A → Type) {x y : A}
(p : x = y) : (is_equiv (transport P p)) := (p : x = y) : (is_equiv (transport P p)) :=
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p) is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p)
@ -245,6 +245,8 @@ end is_equiv
open is_equiv open is_equiv
namespace eq namespace eq
local attribute is_equiv_tr [instance]
definition tr_inv_fn {A : Type} {B : A → Type} {a a' : A} (p : a = a') : definition tr_inv_fn {A : Type} {B : A → Type} {a a' : A} (p : a = a') :
transport B p⁻¹ = (transport B p)⁻¹ := idp transport B p⁻¹ = (transport B p)⁻¹ := idp
definition tr_inv {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a') : definition tr_inv {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a') :

View file

@ -23,7 +23,7 @@ namespace is_equiv
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b)
: by rewrite inv_con_cancel_left : by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite adj ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite [adj f]
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose ... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv ... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv