refactor(library/data/bool): cleanup bool proofs and fix bxor definition
This commit is contained in:
parent
52ec7e6d57
commit
ac9d6c2021
4 changed files with 91 additions and 57 deletions
|
@ -3,16 +3,14 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Leonardo de Moura
|
||||
-/
|
||||
|
||||
import logic.eq
|
||||
open eq eq.ops decidable
|
||||
|
||||
namespace bool
|
||||
local attribute bor [reducible]
|
||||
local attribute band [reducible]
|
||||
|
||||
theorem dichotomy (b : bool) : b = ff ∨ b = tt :=
|
||||
bool.cases_on b (or.inl rfl) (or.inr rfl)
|
||||
by rec_simp
|
||||
|
||||
theorem cond_ff [simp] {A : Type} (t e : A) : cond ff t e = e :=
|
||||
rfl
|
||||
|
@ -20,16 +18,14 @@ namespace bool
|
|||
theorem cond_tt [simp] {A : Type} (t e : A) : cond tt t e = t :=
|
||||
rfl
|
||||
|
||||
theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt
|
||||
| @eq_tt_of_ne_ff tt H := rfl
|
||||
| @eq_tt_of_ne_ff ff H := absurd rfl H
|
||||
theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt :=
|
||||
by rec_simp
|
||||
|
||||
theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff
|
||||
| @eq_ff_of_ne_tt tt H := absurd rfl H
|
||||
| @eq_ff_of_ne_tt ff H := rfl
|
||||
theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff :=
|
||||
by rec_simp
|
||||
|
||||
theorem absurd_of_eq_ff_of_eq_tt {B : Prop} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B :=
|
||||
absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt
|
||||
by rec_simp
|
||||
|
||||
theorem tt_bor [simp] (a : bool) : bor tt a = tt :=
|
||||
rfl
|
||||
|
@ -37,80 +33,67 @@ namespace bool
|
|||
notation a || b := bor a b
|
||||
|
||||
theorem bor_tt [simp] (a : bool) : a || tt = tt :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem ff_bor [simp] (a : bool) : ff || a = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem bor_ff [simp] (a : bool) : a || ff = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem bor_self [simp] (a : bool) : a || a = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem bor.comm [simp] (a b : bool) : a || b = b || a :=
|
||||
by cases a; repeat (cases b | reflexivity)
|
||||
theorem bor_comm [simp] (a b : bool) : a || b = b || a :=
|
||||
by rec_simp
|
||||
|
||||
theorem bor.assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) :=
|
||||
match a with
|
||||
| ff := by rewrite *ff_bor
|
||||
| tt := by rewrite *tt_bor
|
||||
end
|
||||
theorem bor_assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) :=
|
||||
by rec_simp
|
||||
|
||||
theorem bor_left_comm [simp] (a b c : bool) : a || (b || c) = b || (a || c) :=
|
||||
by rec_simp
|
||||
|
||||
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ∨ b = tt :=
|
||||
bool.rec_on a
|
||||
(suppose ff || b = tt,
|
||||
have b = tt, from !ff_bor ▸ this,
|
||||
or.inr this)
|
||||
(suppose tt || b = tt,
|
||||
or.inl rfl)
|
||||
by rec_simp
|
||||
|
||||
theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt :=
|
||||
by rewrite H
|
||||
by rec_simp
|
||||
|
||||
theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt :=
|
||||
bool.rec_on a (by rewrite H) (by rewrite H)
|
||||
by rec_simp
|
||||
|
||||
theorem ff_band [simp] (a : bool) : ff && a = ff :=
|
||||
rfl
|
||||
|
||||
theorem tt_band [simp] (a : bool) : tt && a = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem band_ff [simp] (a : bool) : a && ff = ff :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem band_tt [simp] (a : bool) : a && tt = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem band_self [simp] (a : bool) : a && a = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem band.comm [simp] (a b : bool) : a && b = b && a :=
|
||||
bool.cases_on a
|
||||
(bool.cases_on b rfl rfl)
|
||||
(bool.cases_on b rfl rfl)
|
||||
theorem band_comm [simp] (a b : bool) : a && b = b && a :=
|
||||
by rec_simp
|
||||
|
||||
theorem band.assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) :=
|
||||
match a with
|
||||
| ff := by rewrite *ff_band
|
||||
| tt := by rewrite *tt_band
|
||||
end
|
||||
theorem band_assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) :=
|
||||
by rec_simp
|
||||
|
||||
theorem band_left_comm [simp] (a b c : bool) : a && (b && c) = b && (a && c) :=
|
||||
by rec_simp
|
||||
|
||||
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
|
||||
or.elim (dichotomy a)
|
||||
(suppose a = ff,
|
||||
absurd (by inst_simp) ff_ne_tt)
|
||||
(suppose a = tt, this)
|
||||
by rec_simp
|
||||
|
||||
theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt :=
|
||||
by rewrite [H₁, H₂]
|
||||
by rec_simp
|
||||
|
||||
theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
|
||||
band_elim_left (!band.comm ⬝ H)
|
||||
|
||||
theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a :=
|
||||
bool.cases_on a rfl rfl
|
||||
by rec_simp
|
||||
|
||||
theorem bnot_false [simp] : bnot ff = tt :=
|
||||
rfl
|
||||
|
@ -118,11 +101,47 @@ namespace bool
|
|||
theorem bnot_true [simp] : bnot tt = ff :=
|
||||
rfl
|
||||
|
||||
theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a :=
|
||||
by rec_simp
|
||||
|
||||
theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt :=
|
||||
bool.cases_on a (by contradiction) (λ h, rfl)
|
||||
by rec_simp
|
||||
|
||||
theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff :=
|
||||
bool.cases_on a (λ h, rfl) (by contradiction)
|
||||
by rec_simp
|
||||
|
||||
definition bxor (x:bool) (y:bool) := cond x (bnot y) y
|
||||
definition bxor : bool → bool → bool
|
||||
| ff ff := ff
|
||||
| ff tt := tt
|
||||
| tt ff := tt
|
||||
| tt tt := ff
|
||||
|
||||
lemma ff_bxor_ff [simp] : bxor ff ff = ff := rfl
|
||||
lemma ff_bxor_tt [simp] : bxor ff tt = tt := rfl
|
||||
lemma tt_bxor_ff [simp] : bxor tt ff = tt := rfl
|
||||
lemma tt_bxor_tt [simp] : bxor tt tt = ff := rfl
|
||||
|
||||
lemma bxor_self [simp] (a : bool) : bxor a a = ff :=
|
||||
by rec_simp
|
||||
|
||||
lemma bxor_ff [simp] (a : bool) : bxor a ff = a :=
|
||||
by rec_simp
|
||||
|
||||
lemma bxor_tt [simp] (a : bool) : bxor a tt = bnot a :=
|
||||
by rec_simp
|
||||
|
||||
lemma ff_bxor [simp] (a : bool) : bxor ff a = a :=
|
||||
by rec_simp
|
||||
|
||||
lemma tt_bxor [simp] (a : bool) : bxor tt a = bnot a :=
|
||||
by rec_simp
|
||||
|
||||
lemma bxor_comm [simp] (a b : bool) : bxor a b = bxor b a :=
|
||||
by rec_simp
|
||||
|
||||
lemma bxor_assoc [simp] (a b c : bool) : bxor (bxor a b) c = bxor a (bxor b c) :=
|
||||
by rec_simp
|
||||
|
||||
lemma bxor_left_comm [simp] (a b c : bool) : bxor a (bxor b c) = bxor b (bxor a c) :=
|
||||
by rec_simp
|
||||
end bool
|
||||
|
|
|
@ -146,7 +146,7 @@ strategy rec_and_then(strategy const & S, rec_candidate_selector const & selecto
|
|||
return [=]() { // NOLINT
|
||||
state s = curr_state();
|
||||
unsigned max_rounds = get_blast_recursion_max_rounds(ios().get_options());
|
||||
for (unsigned i = 1; i <= max_rounds; i++) {
|
||||
for (unsigned i = 0; i <= max_rounds; i++) {
|
||||
lean_trace_search(tout() << "starting recursor strategy with max #" << i << " round(s)\n";);
|
||||
curr_state() = s;
|
||||
if (auto pr = rec_strategy_fn(S, selector, i)())
|
||||
|
|
|
@ -7,9 +7,10 @@ Author: Leonardo de Moura
|
|||
#include <string>
|
||||
#include "util/sstream.h"
|
||||
#include "library/blast/actions/assert_cc_action.h"
|
||||
#include "library/blast/simplifier/simplifier_strategies.h"
|
||||
#include "library/blast/actions/no_confusion_action.h"
|
||||
#include "library/blast/unit/unit_actions.h"
|
||||
#include "library/blast/forward/ematch.h"
|
||||
#include "library/blast/simplifier/simplifier_strategies.h"
|
||||
#include "library/blast/recursor/recursor_strategy.h"
|
||||
#include "library/blast/backward/backward_action.h"
|
||||
#include "library/blast/backward/backward_strategy.h"
|
||||
|
@ -54,7 +55,11 @@ static optional<expr> apply_ematch() {
|
|||
static optional<expr> apply_ematch_simp() {
|
||||
flet<bool> set(get_config().m_ematch, true);
|
||||
return mk_action_strategy("ematch_simp",
|
||||
assert_cc_action,
|
||||
[](hypothesis_idx hidx) {
|
||||
Try(no_confusion_action(hidx));
|
||||
TrySolve(assert_cc_action(hidx));
|
||||
return action_result::new_branch();
|
||||
},
|
||||
unit_propagate,
|
||||
ematch_simp_action)();
|
||||
}
|
||||
|
|
|
@ -3,11 +3,15 @@
|
|||
-- BEGINWAIT
|
||||
-- ENDWAIT
|
||||
-- BEGINFINDP
|
||||
bool.tt_bxor_tt|eq (bool.bxor bool.tt bool.tt) bool.ff
|
||||
bool.tt_bxor_ff|eq (bool.bxor bool.tt bool.ff) bool.tt
|
||||
bool.bor_tt|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt
|
||||
bool.band_tt|∀ (a : bool), eq (bool.band a bool.tt) a
|
||||
bool.tt|bool
|
||||
bool.bxor_tt|∀ (a : bool), eq (bool.bxor a bool.tt) (bool.bnot a)
|
||||
bool.eq_tt_of_bnot_eq_ff|eq (bool.bnot ?a) bool.ff → eq ?a bool.tt
|
||||
bool.eq_ff_of_bnot_eq_tt|eq (bool.bnot ?a) bool.tt → eq ?a bool.ff
|
||||
bool.ff_bxor_tt|eq (bool.bxor bool.ff bool.tt) bool.tt
|
||||
bool.absurd_of_eq_ff_of_eq_tt|eq ?a bool.ff → eq ?a bool.tt → ?B
|
||||
bool.eq_tt_of_ne_ff|ne ?a bool.ff → eq ?a bool.tt
|
||||
tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic
|
||||
|
@ -15,6 +19,7 @@ bool.tt_band|∀ (a : bool), eq (bool.band bool.tt a) a
|
|||
bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
|
||||
bool.ff_ne_tt|eq bool.ff bool.tt → false
|
||||
bool.eq_ff_of_ne_tt|ne ?a bool.tt → eq ?a bool.ff
|
||||
bool.tt_bxor|∀ (a : bool), eq (bool.bxor bool.tt a) (bool.bnot a)
|
||||
bool.tt_bor|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt
|
||||
-- ENDFINDP
|
||||
-- BEGINWAIT
|
||||
|
@ -23,10 +28,15 @@ bool.tt_bor|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt
|
|||
tt|bool
|
||||
tt_bor|∀ (a : bool), eq (bor tt a) tt
|
||||
tt_band|∀ (a : bool), eq (band tt a) a
|
||||
tt_bxor|∀ (a : bool), eq (bxor tt a) (bnot a)
|
||||
tt_bxor_tt|eq (bxor tt tt) ff
|
||||
tt_bxor_ff|eq (bxor tt ff) tt
|
||||
bor_tt|∀ (a : bool), eq (bor a tt) tt
|
||||
band_tt|∀ (a : bool), eq (band a tt) a
|
||||
bxor_tt|∀ (a : bool), eq (bxor a tt) (bnot a)
|
||||
eq_tt_of_bnot_eq_ff|eq (bnot ?a) ff → eq ?a tt
|
||||
eq_ff_of_bnot_eq_tt|eq (bnot ?a) tt → eq ?a ff
|
||||
ff_bxor_tt|eq (bxor ff tt) tt
|
||||
absurd_of_eq_ff_of_eq_tt|eq ?a ff → eq ?a tt → ?B
|
||||
eq_tt_of_ne_ff|ne ?a ff → eq ?a tt
|
||||
tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic
|
||||
|
|
Loading…
Reference in a new issue