feat(library/data/set/filter): add filters, show they form a complete lattice

This commit is contained in:
Jeremy Avigad 2015-08-09 21:51:59 -04:00
parent 244052b413
commit b130a144c8
4 changed files with 308 additions and 2 deletions

View file

@ -7,7 +7,7 @@ Complete lattices
TODO: define dual complete lattice and simplify proof of dual theorems.
-/
import algebra.lattice data.set
import algebra.lattice data.set.basic
open set
namespace algebra

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
-/
import .basic .function .map .finite .card
import .basic .function .map .finite .card .filter

View file

@ -0,0 +1,305 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Filters, following Hölzl, Immler, and Huffman, "Type classes and filters for mathematical
analysis in Isabelle/HOL".
-/
import data.set.function logic.identities logic.choice algebra.complete_lattice
namespace set
structure filter (A : Type) :=
(sets : set (set A))
(univ_mem_sets : univ ∈ sets)
(inter_closed : ∀ {a b}, a ∈ sets → b ∈ sets → a ∩ b ∈ sets)
(is_mono : ∀ {a b}, a ⊆ b → a ∈ sets → b ∈ sets)
attribute filter.sets [coercion]
namespace filter -- i.e. set.filter
variable {A : Type}
variables {P Q : A → Prop}
variables {F₁ : filter A} {F₂ : filter A} {F : filter A}
definition eventually (P : A → Prop) (F : filter A) : Prop :=
P ∈ F
-- TODO: notation for eventually?
-- notation `forallf` binders `∈` F `,` r:(scoped:1 P, P) := eventually r F
-- notation `'∀f` binders `∈` F `,` r:(scoped:1 P, P) := eventually r F
theorem eventually_true (F : filter A) : eventually (λx, true) F :=
!filter.univ_mem_sets
theorem eventually_of_forall {P : A → Prop} (F : filter A) (H : ∀ x, P x) : eventually P F :=
by rewrite [eq_univ_of_forall H]; apply eventually_true
theorem eventually_mono (H₁ : eventually P F) (H₂ : ∀x, P x → Q x) : eventually Q F :=
!filter.is_mono H₂ H₁
theorem eventually_and (H₁ : eventually P F) (H₂ : eventually Q F) :
eventually (λ x, P x ∧ Q x) F :=
!filter.inter_closed H₁ H₂
theorem eventually_mp (H₁ : eventually (λx, P x → Q x) F) (H₂ : eventually P F) :
eventually Q F :=
have ∀ x, (P x → Q x) ∧ P x → Q x, from take x, assume H, and.left H (and.right H),
eventually_mono (eventually_and H₁ H₂) this
theorem eventually_mpr (H₁ : eventually P F) (H₂ : eventually (λx, P x → Q x) F) :
eventually Q F := eventually_mp H₂ H₁
variables (P Q F)
theorem eventually_and_iff : eventually (λ x, P x ∧ Q x) F ↔ eventually P F ∧ eventually Q F :=
iff.intro
(assume H, and.intro
(eventually_mpr H (eventually_of_forall F (take x, and.left)))
(eventually_mpr H (eventually_of_forall F (take x, and.right))))
(assume H, eventually_and (and.left H) (and.right H))
variables {P Q F}
-- TODO: port eventually_ball_finite_distrib, etc.
theorem eventually_choice {B : Type} [nonemptyB : nonempty B] {R : A → B → Prop} {F : filter A}
(H : eventually (λ x, ∃ y, R x y) F) : ∃ f, eventually (λ x, R x (f x)) F :=
let f := λ x, epsilon (λ y, R x y) in
exists.intro f
(eventually_mono H
(take x, suppose ∃ y, R x y,
show R x (f x), from epsilon_spec this))
theorem exists_not_of_not_eventually (H : ¬ eventually P F) : ∃ x, ¬ P x :=
exists_not_of_not_forall (assume H', H (eventually_of_forall F H'))
theorem eventually_iff_mp (H₁ : eventually (λ x, P x ↔ Q x) F) (H₂ : eventually P F) :
eventually Q F :=
eventually_mono (eventually_and H₁ H₂) (λ x H, iff.mp (and.left H) (and.right H))
theorem eventually_iff_mpr (H₁ : eventually (λ x, P x ↔ Q x) F) (H₂ : eventually Q F) :
eventually P F :=
eventually_mono (eventually_and H₁ H₂) (λ x H, iff.mpr (and.left H) (and.right H))
theorem eventually_iff_iff (H : eventually (λ x, P x ↔ Q x) F) : eventually P F ↔ eventually Q F :=
iff.intro (eventually_iff_mp H) (eventually_iff_mpr H)
-- TODO: port frequently and properties?
/- filters form a lattice under ⊇ -/
protected theorem eq : sets F₁ = sets F₂ → F₁ = F₂ :=
begin
cases F₁ with s₁ u₁ i₁ m₁, cases F₂ with s₂ u₂ i₂ m₂, esimp,
intro eqs₁s₂, revert [u₁, i₁, m₁, u₂, i₂, m₂],
subst s₁, intros, exact rfl
end
definition weakens [reducible] (F₁ F₂ : filter A) := F₁ ⊇ F₂
infix `≼`:50 := weakens
definition refines [reducible] (F₁ F₂ : filter A) := F₁ ⊆ F₂
infix `≽`:50 := refines
theorem weakens.refl (F : filter A) : F ≼ F := subset.refl _
theorem weakens.trans {F₁ F₂ F₃ : filter A} (H₁ : F₁ ≼ F₂) (H₂ : F₂ ≼ F₃) : F₁ ≼ F₃ :=
subset.trans H₂ H₁
theorem weakens.antisymm (H₁ : F₁ ≼ F₂) (H₂ : F₂ ≼ F₁) : F₁ = F₂ :=
filter.eq (eq_of_subset_of_subset H₂ H₁)
definition bot : filter A :=
⦃ filter,
sets := univ,
univ_mem_sets := trivial,
inter_closed := λ a b Ha Hb, trivial,
is_mono := λ a b Ha Hsub, trivial
notation `⊥` := bot
definition top : filter A :=
⦃ filter,
sets := '{univ},
univ_mem_sets := !or.inl rfl,
inter_closed := abstract
λ a b Ha Hb,
by rewrite [*!mem_singleton_iff at *]; substvars; exact !inter_univ
end,
is_mono := abstract
λ a b Hsub Ha,
begin
rewrite [mem_singleton_iff at Ha], subst [Ha],
exact or.inl (eq_univ_of_univ_subset Hsub)
end
end
notation `` := top
definition sup (F₁ F₂ : filter A) : filter A :=
⦃ filter,
sets := F₁ ∩ F₂,
univ_mem_sets := and.intro (filter.univ_mem_sets F₁) (filter.univ_mem_sets F₂),
inter_closed := abstract
λ a b Ha Hb,
and.intro
(filter.inter_closed F₁ (and.left Ha) (and.left Hb))
(filter.inter_closed F₂ (and.right Ha) (and.right Hb))
end,
is_mono := abstract
λ a b Hsub Ha,
and.intro
(filter.is_mono F₁ Hsub (and.left Ha))
(filter.is_mono F₂ Hsub (and.right Ha))
end
infix `⊔`:65 := sup
definition inf (F₁ F₂ : filter A) : filter A :=
⦃ filter,
sets := {r | ∃₀ s ∈ F₁, ∃₀ t ∈ F₂, r ⊇ s ∩ t},
univ_mem_sets := abstract
bounded_exists.intro (univ_mem_sets F₁)
(bounded_exists.intro (univ_mem_sets F₂)
(by rewrite univ_inter; apply subset.refl))
end,
inter_closed := abstract
λ a b Ha Hb,
obtain a₁ [a₁F₁ [a₂ [a₂F₂ (Ha' : a ⊇ a₁ ∩ a₂)]]], from Ha,
obtain b₁ [b₁F₁ [b₂ [b₂F₂ (Hb' : b ⊇ b₁ ∩ b₂)]]], from Hb,
assert a₁ ∩ b₁ ∩ (a₂ ∩ b₂) = a₁ ∩ a₂ ∩ (b₁ ∩ b₂),
by rewrite [*inter.assoc, inter.left_comm b₁],
have a ∩ b ⊇ a₁ ∩ b₁ ∩ (a₂ ∩ b₂),
begin
rewrite this,
apply subset_inter,
{apply subset.trans,
apply inter_subset_left,
exact Ha'},
apply subset.trans,
apply inter_subset_right,
exact Hb'
end,
bounded_exists.intro (inter_closed F₁ a₁F₁ b₁F₁)
(bounded_exists.intro (inter_closed F₂ a₂F₂ b₂F₂)
this)
end,
is_mono := abstract
λ a b Hsub Ha,
obtain a₁ [a₁F₁ [a₂ [a₂F₂ (Ha' : a ⊇ a₁ ∩ a₂)]]], from Ha,
bounded_exists.intro a₁F₁
(bounded_exists.intro a₂F₂ (subset.trans Ha' Hsub))
end
infix `⊓`:70 := inf
definition Sup (S : set (filter A)) : filter A :=
⦃ filter,
sets := {s | ∀₀ F ∈ S, s ∈ F},
univ_mem_sets := λ F FS, univ_mem_sets F,
inter_closed := abstract
λ a b Ha Hb F FS,
inter_closed F (Ha F FS) (Hb F FS)
end,
is_mono := abstract
λ a b asubb Ha F FS,
is_mono F asubb (Ha F FS)
end
prefix `⨆`:65 := Sup
definition Inf (S : set (filter A)) : filter A :=
Sup {F | ∀ G, G ∈ S → G ≽ F}
prefix `⨅`:70 := Inf
theorem eventually_of_refines (H₁ : eventually P F₁) (H₂ : F₁ ≽ F₂) : eventually P F₂ := H₂ H₁
theorem refines_of_forall (H : ∀ P, eventually P F₁ → eventually P F₂) : F₁ ≽ F₂ := H
theorem eventually_bot (P : A → Prop) : eventually P ⊥ := trivial
theorem refines_bot (F : filter A) : F ≽ ⊥ :=
take P, suppose eventually P F, eventually_bot P
theorem eventually_top_of_forall (H : ∀ x, P x) : eventually P :=
by rewrite [↑eventually, ↑top, mem_singleton_iff]; exact eq_univ_of_forall H
theorem forall_of_eventually_top : eventually P → ∀ x, P x :=
by rewrite [↑eventually, ↑top, mem_singleton_iff]; intro H x; rewrite H; exact trivial
theorem eventually_top (P : A → Prop) : eventually P top ↔ ∀ x, P x :=
iff.intro forall_of_eventually_top eventually_top_of_forall
theorem top_refines (F : filter A) : ≽ F :=
take P, suppose eventually P top,
eventually_of_forall F (forall_of_eventually_top this)
theorem eventually_sup (P : A → Prop) (F₁ F₂ : filter A) :
eventually P (sup F₁ F₂) ↔ eventually P F₁ ∧ eventually P F₂ :=
!iff.refl
theorem sup_refines_left (F₁ F₂ : filter A) : F₁ ⊔ F₂ ≽ F₁ :=
inter_subset_left _ _
theorem sup_refines_right (F₁ F₂ : filter A) : F₁ ⊔ F₂ ≽ F₂ :=
inter_subset_right _ _
theorem refines_sup (H₁ : F ≽ F₁) (H₂ : F ≽ F₂) : F ≽ F₁ ⊔ F₂ :=
subset_inter H₁ H₂
theorem refines_inf_left (F₁ F₂ : filter A) : F₁ ≽ F₁ ⊓ F₂ :=
take s, suppose s ∈ F₁,
bounded_exists.intro `s ∈ F₁`
(bounded_exists.intro (univ_mem_sets F₂) (by rewrite inter_univ; apply subset.refl))
theorem refines_inf_right (F₁ F₂ : filter A) : F₂ ≽ F₁ ⊓ F₂ :=
take s, suppose s ∈ F₂,
bounded_exists.intro (univ_mem_sets F₁)
(bounded_exists.intro `s ∈ F₂` (by rewrite univ_inter; apply subset.refl))
theorem inf_refines (H₁ : F₁ ≽ F) (H₂ : F₂ ≽ F) : F₁ ⊓ F₂ ≽ F :=
take s, suppose s ∈ F₁ ⊓ F₂,
obtain a₁ [a₁F₁ [a₂ [a₂F₂ (Hsub : s ⊇ a₁ ∩ a₂)]]], from this,
have a₁ ∈ F, from H₁ a₁F₁,
have a₂ ∈ F, from H₂ a₂F₂,
show s ∈ F, from is_mono F Hsub (inter_closed F `a₁ ∈ F` `a₂ ∈ F`)
theorem refines_Sup {F : filter A} {S : set (filter A)} (H : ∀₀ G ∈ S, F ≽ G) : F ≽ ⨆ S :=
λ s Fs G GS, H GS Fs
theorem Sup_refines {F : filter A} {S : set (filter A)} (FS : F ∈ S) : ⨆ S ≽ F :=
λ s sInfS, sInfS F FS
theorem Inf_refines {F : filter A} {S : set (filter A)} (H : ∀₀ G ∈ S, G ≽ F) : ⨅ S ≽ F :=
Sup_refines H
theorem refines_Inf {F : filter A} {S : set (filter A)} (FS : F ∈ S) : F ≽ ⨅ S :=
refines_Sup (λ G GS, GS F FS)
protected definition complete_lattice [reducible] : algebra.complete_lattice (filter A) :=
⦃ algebra.complete_lattice,
le := weakens,
le_refl := weakens.refl,
le_trans := @weakens.trans A,
le_antisymm := @weakens.antisymm A,
inf := inf,
le_inf := @inf_refines A,
inf_le_left := refines_inf_left,
inf_le_right := refines_inf_right,
sup := sup,
sup_le := @refines_sup A,
le_sup_left := sup_refines_left,
le_sup_right := sup_refines_right,
Inf := Inf,
Inf_le := @refines_Inf A,
le_Inf := @Inf_refines A
-- TODO: migrate theorems from weak order, lattice
-- TODO: continue porting
end filter
end set

View file

@ -9,4 +9,5 @@ Subsets of an arbitrary type.
* [map](map.lean) : set functions bundled with their domain and codomain
* [finite](finite.lean) : the "finite" predicate on sets
* [card](card.lean) : cardinality (for finite sets)
* [filter](filter.lean) : filters on sets
* [classical_inverse](classical_inverse.lean) : inverse functions, defined classically