feat(library/data/set/basic): add basic 'set' theorems
This commit is contained in:
parent
8f815cabc0
commit
b2415f7b4b
1 changed files with 38 additions and 1 deletions
|
@ -3,7 +3,7 @@ Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Author: Jeremy Avigad, Leonardo de Moura
|
Author: Jeremy Avigad, Leonardo de Moura
|
||||||
-/
|
-/
|
||||||
import logic.connectives algebra.binary
|
import logic.connectives logic.identities algebra.binary
|
||||||
open eq.ops binary
|
open eq.ops binary
|
||||||
|
|
||||||
definition set [reducible] (X : Type) := X → Prop
|
definition set [reducible] (X : Type) := X → Prop
|
||||||
|
@ -32,6 +32,9 @@ take x, assume ax, subbc (subab ax)
|
||||||
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||||||
setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
|
setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
|
||||||
|
|
||||||
|
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||||||
|
assume h₁ h₂, h₁ _ h₂
|
||||||
|
|
||||||
-- an alterantive name
|
-- an alterantive name
|
||||||
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||||||
subset.antisymm h₁ h₂
|
subset.antisymm h₁ h₂
|
||||||
|
@ -97,6 +100,12 @@ theorem mem_union (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b
|
||||||
|
|
||||||
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
|
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
|
||||||
|
|
||||||
|
theorem mem_union_of_mem_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b :=
|
||||||
|
assume h, or.inl h
|
||||||
|
|
||||||
|
theorem mem_union_of_mem_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b :=
|
||||||
|
assume h, or.inr h
|
||||||
|
|
||||||
theorem union_self (a : set X) : a ∪ a = a :=
|
theorem union_self (a : set X) : a ∪ a = a :=
|
||||||
setext (take x, !or_self)
|
setext (take x, !or_self)
|
||||||
|
|
||||||
|
@ -188,6 +197,34 @@ notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
|
||||||
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
|
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
|
||||||
take y, assume ys, or.inr ys
|
take y, assume ys, or.inr ys
|
||||||
|
|
||||||
|
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
|
||||||
|
or.inl rfl
|
||||||
|
|
||||||
|
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
|
||||||
|
assume h, or.inr h
|
||||||
|
|
||||||
|
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
||||||
|
assume h, h
|
||||||
|
|
||||||
|
theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
|
||||||
|
or_resolve_right (eq_or_mem_of_mem_insert xin)
|
||||||
|
|
||||||
|
theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) :=
|
||||||
|
propext (iff.intro !eq_or_mem_of_mem_insert
|
||||||
|
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
|
||||||
|
|
||||||
|
theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s :=
|
||||||
|
setext (λ x, eq.substr (mem_insert_eq x a s)
|
||||||
|
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
|
||||||
|
|
||||||
|
theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) :=
|
||||||
|
setext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
|
||||||
|
|
||||||
|
theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y :=
|
||||||
|
assume h, or.elim (eq_or_mem_of_mem_insert h)
|
||||||
|
(suppose x = y, this)
|
||||||
|
(suppose x ∈ ∅, absurd this !not_mem_empty)
|
||||||
|
|
||||||
/- separation -/
|
/- separation -/
|
||||||
|
|
||||||
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
|
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
|
||||||
|
|
Loading…
Reference in a new issue