feat(library/hott) add the proof that the inverse of an equivalence is an equivalence

This is done by changing the order of theorems and using the adjointification.
This commit is contained in:
Jakob von Raumer 2014-10-24 19:19:50 -04:00 committed by Leonardo de Moura
parent e7aa5f65e7
commit b575c972bd

View file

@ -123,10 +123,59 @@ namespace IsEquiv
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹, ... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
eq3) in eq3) in
IsEquiv_mk (inv Hf) sect' retr' adj' IsEquiv_mk (inv Hf) sect' retr' adj'
end IsEquiv
--TODO: Maybe wait until rewrite rules are available. namespace IsEquiv
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) :=
sorry -- IsEquiv_mk sorry sorry sorry sorry variables {A B : Type} (f : A → B) (g : B → A)
(retr : Sect g f) (sect : Sect f g)
--To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse.
definition adjointify : IsEquiv f :=
let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in
let adj' := (λ (a : A),
let fgretrfa := ap f (ap g (retr (f a))) in
let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in
let fgfa := f (g (f a)) in
let retrfa := retr (f a) in
have eq1 : ap f (sect a) ≈ _,
from calc ap f (sect a)
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
from !concat_p1 ▹ eq1,
have eq3 : idp ≈ _,
from calc idp
≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2
... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹},
have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a),
from moveR_M1 _ _ eq3,
eq4) in
IsEquiv_mk g retr sect' adj'
end IsEquiv
namespace IsEquiv
variables {A B: Type} {f : A → B} (Hf : IsEquiv f)
--The inverse of an equivalence is, again, an equivalence.
definition inv_closed : (IsEquiv (inv Hf)) :=
adjointify (inv Hf) f (sect Hf) (retr Hf)
end IsEquiv
namespace IsEquiv
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) := definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b)) homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
@ -158,7 +207,6 @@ namespace IsEquiv
end IsEquiv end IsEquiv
namespace Equiv namespace Equiv
variables {A B C : Type} (eqf : A ≃ B) variables {A B C : Type} (eqf : A ≃ B)
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
@ -167,8 +215,6 @@ namespace Equiv
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf)) Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg)) (IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
check IsEquiv.path_closed
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B := theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq) Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
@ -187,43 +233,3 @@ namespace Equiv
Equiv_mk (transport P p) (IsEquiv.transport P p) Equiv_mk (transport P p) (IsEquiv.transport P p)
end Equiv end Equiv
namespace IsEquiv
variables {A B : Type} (f : A → B) (g : B → A)
(retr : Sect g f) (sect : Sect f g)
definition adjointify : IsEquiv f :=
let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in
let adj' := (λ (a : A),
let fgretrfa := ap f (ap g (retr (f a))) in
let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in
let fgfa := f (g (f a)) in
let retrfa := retr (f a) in
have eq1 : ap f (sect a) ≈ _,
from calc ap f (sect a)
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
from !concat_p1 ▹ eq1,
have eq3 : idp ≈ _,
from calc idp
≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2
... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹},
have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a),
from moveR_M1 _ _ eq3,
eq4) in
IsEquiv_mk g retr sect' adj'
end IsEquiv