feat(library/hott) add the proof that the inverse of an equivalence is an equivalence
This is done by changing the order of theorems and using the adjointification.
This commit is contained in:
parent
e7aa5f65e7
commit
b575c972bd
1 changed files with 52 additions and 46 deletions
|
@ -123,10 +123,59 @@ namespace IsEquiv
|
||||||
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
|
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
|
||||||
eq3) in
|
eq3) in
|
||||||
IsEquiv_mk (inv Hf) sect' retr' adj'
|
IsEquiv_mk (inv Hf) sect' retr' adj'
|
||||||
|
end IsEquiv
|
||||||
|
|
||||||
--TODO: Maybe wait until rewrite rules are available.
|
namespace IsEquiv
|
||||||
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) :=
|
|
||||||
sorry -- IsEquiv_mk sorry sorry sorry sorry
|
variables {A B : Type} (f : A → B) (g : B → A)
|
||||||
|
(retr : Sect g f) (sect : Sect f g)
|
||||||
|
|
||||||
|
--To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse.
|
||||||
|
definition adjointify : IsEquiv f :=
|
||||||
|
let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in
|
||||||
|
let adj' := (λ (a : A),
|
||||||
|
let fgretrfa := ap f (ap g (retr (f a))) in
|
||||||
|
let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in
|
||||||
|
let fgfa := f (g (f a)) in
|
||||||
|
let retrfa := retr (f a) in
|
||||||
|
have eq1 : ap f (sect a) ≈ _,
|
||||||
|
from calc ap f (sect a)
|
||||||
|
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
|
||||||
|
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
|
||||||
|
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
||||||
|
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
||||||
|
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
|
||||||
|
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
|
||||||
|
from !concat_p1 ▹ eq1,
|
||||||
|
have eq3 : idp ≈ _,
|
||||||
|
from calc idp
|
||||||
|
≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2
|
||||||
|
... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp
|
||||||
|
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
|
||||||
|
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
|
||||||
|
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
||||||
|
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
||||||
|
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
|
||||||
|
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
|
||||||
|
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
|
||||||
|
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹},
|
||||||
|
have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a),
|
||||||
|
from moveR_M1 _ _ eq3,
|
||||||
|
eq4) in
|
||||||
|
IsEquiv_mk g retr sect' adj'
|
||||||
|
end IsEquiv
|
||||||
|
|
||||||
|
namespace IsEquiv
|
||||||
|
variables {A B: Type} {f : A → B} (Hf : IsEquiv f)
|
||||||
|
|
||||||
|
--The inverse of an equivalence is, again, an equivalence.
|
||||||
|
definition inv_closed : (IsEquiv (inv Hf)) :=
|
||||||
|
adjointify (inv Hf) f (sect Hf) (retr Hf)
|
||||||
|
|
||||||
|
end IsEquiv
|
||||||
|
|
||||||
|
namespace IsEquiv
|
||||||
|
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
|
||||||
|
|
||||||
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
||||||
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
|
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
|
||||||
|
@ -158,7 +207,6 @@ namespace IsEquiv
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
|
||||||
namespace Equiv
|
namespace Equiv
|
||||||
|
|
||||||
variables {A B C : Type} (eqf : A ≃ B)
|
variables {A B C : Type} (eqf : A ≃ B)
|
||||||
|
|
||||||
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
||||||
|
@ -167,8 +215,6 @@ namespace Equiv
|
||||||
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
||||||
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
|
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
|
||||||
|
|
||||||
check IsEquiv.path_closed
|
|
||||||
|
|
||||||
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
|
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
|
||||||
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
|
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
|
||||||
|
|
||||||
|
@ -187,43 +233,3 @@ namespace Equiv
|
||||||
Equiv_mk (transport P p) (IsEquiv.transport P p)
|
Equiv_mk (transport P p) (IsEquiv.transport P p)
|
||||||
|
|
||||||
end Equiv
|
end Equiv
|
||||||
|
|
||||||
namespace IsEquiv
|
|
||||||
|
|
||||||
variables {A B : Type} (f : A → B) (g : B → A)
|
|
||||||
(retr : Sect g f) (sect : Sect f g)
|
|
||||||
|
|
||||||
definition adjointify : IsEquiv f :=
|
|
||||||
let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in
|
|
||||||
let adj' := (λ (a : A),
|
|
||||||
let fgretrfa := ap f (ap g (retr (f a))) in
|
|
||||||
let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in
|
|
||||||
let fgfa := f (g (f a)) in
|
|
||||||
let retrfa := retr (f a) in
|
|
||||||
have eq1 : ap f (sect a) ≈ _,
|
|
||||||
from calc ap f (sect a)
|
|
||||||
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
|
|
||||||
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
|
|
||||||
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
|
||||||
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
|
||||||
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
|
|
||||||
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
|
|
||||||
from !concat_p1 ▹ eq1,
|
|
||||||
have eq3 : idp ≈ _,
|
|
||||||
from calc idp
|
|
||||||
≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2
|
|
||||||
... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp
|
|
||||||
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
|
|
||||||
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
|
|
||||||
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
|
||||||
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
|
||||||
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
|
|
||||||
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
|
|
||||||
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
|
|
||||||
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹},
|
|
||||||
have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a),
|
|
||||||
from moveR_M1 _ _ eq3,
|
|
||||||
eq4) in
|
|
||||||
IsEquiv_mk g retr sect' adj'
|
|
||||||
|
|
||||||
end IsEquiv
|
|
||||||
|
|
Loading…
Reference in a new issue