fix(library/hott) close gaps and clean up adjointification proof
This commit is contained in:
parent
16a0e970f7
commit
e7aa5f65e7
1 changed files with 3 additions and 3 deletions
|
@ -105,7 +105,7 @@ namespace IsEquiv
|
|||
from calc ap f secta ⬝ ff'a
|
||||
≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹
|
||||
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
|
||||
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f ff'a},
|
||||
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f _},
|
||||
have eq2 : _ ≈ _,
|
||||
from calc retrf'a
|
||||
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
|
||||
|
@ -205,7 +205,7 @@ definition adjointify : IsEquiv f :=
|
|||
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
|
||||
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
|
||||
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
||||
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹},
|
||||
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
||||
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
|
||||
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
|
||||
from !concat_p1 ▹ eq1,
|
||||
|
@ -216,7 +216,7 @@ definition adjointify : IsEquiv f :=
|
|||
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
|
||||
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
|
||||
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
||||
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹}
|
||||
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
||||
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
|
||||
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
|
||||
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
|
||||
|
|
Loading…
Reference in a new issue