feat(library/data/bool): do not use ! as notation for bnot, rename band/bor -> and/or

This commit is contained in:
Leonardo de Moura 2014-10-01 16:51:10 -07:00
parent 72beb438e6
commit bc6ebf34be
4 changed files with 66 additions and 69 deletions

View file

@ -1,7 +1,7 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura -- Author: Leonardo de Moura
import general_notation
import logic.core.connectives logic.core.decidable logic.core.inhabited import logic.core.connectives logic.core.decidable logic.core.inhabited
open eq_ops eq decidable open eq_ops eq decidable
@ -35,104 +35,102 @@ namespace bool
... = false : cond_ff _ _) ... = false : cond_ff _ _)
true_ne_false true_ne_false
definition bor (a b : bool) := definition or (a b : bool) :=
rec_on a (rec_on b ff tt) tt rec_on a (rec_on b ff tt) tt
theorem bor_tt_left (a : bool) : bor tt a = tt := theorem or_tt_left (a : bool) : or tt a = tt :=
rfl rfl
infixl `||` := bor infixl `||` := or
theorem bor_tt_right (a : bool) : a || tt = tt := theorem or_tt_right (a : bool) : a || tt = tt :=
cases_on a rfl rfl cases_on a rfl rfl
theorem bor_ff_left (a : bool) : ff || a = a := theorem or_ff_left (a : bool) : ff || a = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem bor_ff_right (a : bool) : a || ff = a := theorem or_ff_right (a : bool) : a || ff = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem bor_id (a : bool) : a || a = a := theorem or_id (a : bool) : a || a = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem bor_comm (a b : bool) : a || b = b || a := theorem or_comm (a b : bool) : a || b = b || a :=
cases_on a cases_on a
(cases_on b rfl rfl) (cases_on b rfl rfl)
(cases_on b rfl rfl) (cases_on b rfl rfl)
theorem bor_assoc (a b c : bool) : (a || b) || c = a || (b || c) := theorem or_assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
cases_on a cases_on a
(calc (ff || b) || c = b || c : {bor_ff_left b} (calc (ff || b) || c = b || c : {or_ff_left b}
... = ff || (b || c) : bor_ff_left (b || c)⁻¹) ... = ff || (b || c) : or_ff_left (b || c)⁻¹)
(calc (tt || b) || c = tt || c : {bor_tt_left b} (calc (tt || b) || c = tt || c : {or_tt_left b}
... = tt : bor_tt_left c ... = tt : or_tt_left c
... = tt || (b || c) : bor_tt_left (b || c)⁻¹) ... = tt || (b || c) : or_tt_left (b || c)⁻¹)
theorem bor_to_or {a b : bool} : a || b = tt → a = tt b = tt := theorem or_to_or {a b : bool} : a || b = tt → a = tt b = tt :=
rec_on a rec_on a
(assume H : ff || b = tt, (assume H : ff || b = tt,
have Hb : b = tt, from (bor_ff_left b) ▸ H, have Hb : b = tt, from (or_ff_left b) ▸ H,
or.inr Hb) or.inr Hb)
(assume H, or.inl rfl) (assume H, or.inl rfl)
definition band (a b : bool) := definition and (a b : bool) :=
rec_on a ff (rec_on b ff tt) rec_on a ff (rec_on b ff tt)
infixl `&&` := band infixl `&&` := and
theorem band_ff_left (a : bool) : ff && a = ff := theorem and_ff_left (a : bool) : ff && a = ff :=
rfl rfl
theorem band_tt_left (a : bool) : tt && a = a := theorem and_tt_left (a : bool) : tt && a = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem band_ff_right (a : bool) : a && ff = ff := theorem and_ff_right (a : bool) : a && ff = ff :=
cases_on a rfl rfl cases_on a rfl rfl
theorem band_tt_right (a : bool) : a && tt = a := theorem and_tt_right (a : bool) : a && tt = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem band_id (a : bool) : a && a = a := theorem and_id (a : bool) : a && a = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem band_comm (a b : bool) : a && b = b && a := theorem and_comm (a b : bool) : a && b = b && a :=
cases_on a cases_on a
(cases_on b rfl rfl) (cases_on b rfl rfl)
(cases_on b rfl rfl) (cases_on b rfl rfl)
theorem band_assoc (a b c : bool) : (a && b) && c = a && (b && c) := theorem and_assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
cases_on a cases_on a
(calc (ff && b) && c = ff && c : {band_ff_left b} (calc (ff && b) && c = ff && c : {and_ff_left b}
... = ff : band_ff_left c ... = ff : and_ff_left c
... = ff && (b && c) : band_ff_left (b && c)⁻¹) ... = ff && (b && c) : and_ff_left (b && c)⁻¹)
(calc (tt && b) && c = b && c : {band_tt_left b} (calc (tt && b) && c = b && c : {and_tt_left b}
... = tt && (b && c) : band_tt_left (b && c)⁻¹) ... = tt && (b && c) : and_tt_left (b && c)⁻¹)
theorem band_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt := theorem and_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
or.elim (dichotomy a) or.elim (dichotomy a)
(assume H0 : a = ff, (assume H0 : a = ff,
absurd absurd
(calc ff = ff && b : (band_ff_left _)⁻¹ (calc ff = ff && b : (and_ff_left _)⁻¹
... = a && b : {H0⁻¹} ... = a && b : {H0⁻¹}
... = tt : H) ... = tt : H)
ff_ne_tt) ff_ne_tt)
(assume H1 : a = tt, H1) (assume H1 : a = tt, H1)
theorem band_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt := theorem and_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band_eq_tt_elim_left (band_comm b a ⬝ H) and_eq_tt_elim_left (and_comm b a ⬝ H)
definition bnot (a : bool) := definition not (a : bool) :=
rec_on a tt ff rec_on a tt ff
notation `!` x:max := bnot x theorem bnot_bnot (a : bool) : not (not a) = a :=
theorem bnot_bnot (a : bool) : !!a = a :=
cases_on a rfl rfl cases_on a rfl rfl
theorem bnot_false : !ff = tt := theorem bnot_false : not ff = tt :=
rfl rfl
theorem bnot_true : !tt = ff := theorem bnot_true : not tt = ff :=
rfl rfl
protected theorem is_inhabited [instance] : inhabited bool := protected theorem is_inhabited [instance] : inhabited bool :=

View file

@ -45,26 +45,26 @@ infixl `∩` := inter
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
iff.intro iff.intro
(assume H, and.intro (band_eq_tt_elim_left H) (band_eq_tt_elim_right H)) (assume H, and.intro (and_eq_tt_elim_left H) (and_eq_tt_elim_right H))
(assume H, (assume H,
have e1 : A x = tt, from and.elim_left H, have e1 : A x = tt, from and.elim_left H,
have e2 : B x = tt, from and.elim_right H, have e2 : B x = tt, from and.elim_right H,
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band_tt_left tt) show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ and_tt_left tt)
theorem inter_id {T : Type} (A : set T) : A ∩ A A := theorem inter_id {T : Type} (A : set T) : A ∩ A A :=
take x, band_id (A x) ▸ iff.rfl take x, and_id (A x) ▸ iff.rfl
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∅ := theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∅ :=
take x, band_ff_right (A x) ▸ iff.rfl take x, and_ff_right (A x) ▸ iff.rfl
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∅ := theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∅ :=
take x, band_ff_left (A x) ▸ iff.rfl take x, and_ff_left (A x) ▸ iff.rfl
theorem inter_comm {T : Type} (A B : set T) : A ∩ B B ∩ A := theorem inter_comm {T : Type} (A B : set T) : A ∩ B B ∩ A :=
take x, band_comm (A x) (B x) ▸ iff.rfl take x, and_comm (A x) (B x) ▸ iff.rfl
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C A ∩ (B ∩ C) := theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C A ∩ (B ∩ C) :=
take x, band_assoc (A x) (B x) (C x) ▸ iff.rfl take x, and_assoc (A x) (B x) (C x) ▸ iff.rfl
definition union {T : Type} (A B : set T) : set T := definition union {T : Type} (A B : set T) : set T :=
λx, A x || B x λx, A x || B x
@ -72,26 +72,26 @@ infixl `` := union
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B) := theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B) :=
iff.intro iff.intro
(assume H, bor_to_or H) (assume H, or_to_or H)
(assume H, or.elim H (assume H, or.elim H
(assume Ha : A x = tt, (assume Ha : A x = tt,
show A x || B x = tt, from Ha⁻¹ ▸ bor_tt_left (B x)) show A x || B x = tt, from Ha⁻¹ ▸ or_tt_left (B x))
(assume Hb : B x = tt, (assume Hb : B x = tt,
show A x || B x = tt, from Hb⁻¹ ▸ bor_tt_right (A x))) show A x || B x = tt, from Hb⁻¹ ▸ or_tt_right (A x)))
theorem union_id {T : Type} (A : set T) : A A A := theorem union_id {T : Type} (A : set T) : A A A :=
take x, bor_id (A x) ▸ iff.rfl take x, or_id (A x) ▸ iff.rfl
theorem union_empty_right {T : Type} (A : set T) : A A := theorem union_empty_right {T : Type} (A : set T) : A A :=
take x, bor_ff_right (A x) ▸ iff.rfl take x, or_ff_right (A x) ▸ iff.rfl
theorem union_empty_left {T : Type} (A : set T) : ∅ A A := theorem union_empty_left {T : Type} (A : set T) : ∅ A A :=
take x, bor_ff_left (A x) ▸ iff.rfl take x, or_ff_left (A x) ▸ iff.rfl
theorem union_comm {T : Type} (A B : set T) : A B B A := theorem union_comm {T : Type} (A B : set T) : A B B A :=
take x, bor_comm (A x) (B x) ▸ iff.rfl take x, or_comm (A x) (B x) ▸ iff.rfl
theorem union_assoc {T : Type} (A B C : set T) : (A B) C A (B C) := theorem union_assoc {T : Type} (A B C : set T) : (A B) C A (B C) :=
take x, bor_assoc (A x) (B x) (C x) ▸ iff.rfl take x, or_assoc (A x) (B x) (C x) ▸ iff.rfl
end set end set

View file

@ -65,7 +65,6 @@ precedence `>`:50
precedence `&&`:70 -- infixl precedence `&&`:70 -- infixl
precedence `||`:65 -- infixl precedence `||`:65 -- infixl
precedence `!`:85 -- boolean negation, follow by rbp 100
-- ### set operations -- ### set operations

View file

@ -3,26 +3,26 @@
-- BEGINWAIT -- BEGINWAIT
-- ENDWAIT -- ENDWAIT
-- BEGINFINDP -- BEGINFINDP
bool.bor_tt_left|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt bool.and_tt_left|∀ (a : bool), eq (bool.and bool.tt a) a
bool.and_tt_right|∀ (a : bool), eq (bool.and a bool.tt) a
bool.tt|bool bool.tt|bool
bool.bor_tt_right|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt bool.or_tt_left|∀ (a : bool), eq (bool.or bool.tt a) bool.tt
bool.band_tt_left|∀ (a : bool), eq (bool.band bool.tt a) a bool.and_eq_tt_elim_left|eq (bool.and ?a ?b) bool.tt → eq ?a bool.tt
bool.band_tt_right|∀ (a : bool), eq (bool.band a bool.tt) a bool.and_eq_tt_elim_right|eq (bool.and ?a ?b) bool.tt → eq ?b bool.tt
bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
bool.or_tt_right|∀ (a : bool), eq (bool.or a bool.tt) bool.tt
bool.ff_ne_tt|not (eq bool.ff bool.tt) bool.ff_ne_tt|not (eq bool.ff bool.tt)
bool.band_eq_tt_elim_left|eq (bool.band ?a ?b) bool.tt → eq ?a bool.tt
bool.band_eq_tt_elim_right|eq (bool.band ?a ?b) bool.tt → eq ?b bool.tt
-- ENDFINDP -- ENDFINDP
-- BEGINWAIT -- BEGINWAIT
-- ENDWAIT -- ENDWAIT
-- BEGINFINDP -- BEGINFINDP
tt|bool tt|bool
bor_tt_left|∀ (a : bool), eq (bor tt a) tt and_tt_left|∀ (a : bool), eq (and tt a) a
bor_tt_right|∀ (a : bool), eq (bor a tt) tt and_tt_right|∀ (a : bool), eq (and a tt) a
band_tt_left|∀ (a : bool), eq (band tt a) a or_tt_left|∀ (a : bool), eq (or tt a) tt
band_tt_right|∀ (a : bool), eq (band a tt) a and_eq_tt_elim_left|eq (and ?a ?b) tt → eq ?a tt
and_eq_tt_elim_right|eq (and ?a ?b) tt → eq ?b tt
cond_tt|∀ (t e : ?A), eq (cond tt t e) t cond_tt|∀ (t e : ?A), eq (cond tt t e) t
or_tt_right|∀ (a : bool), eq (or a tt) tt
ff_ne_tt|not (eq ff tt) ff_ne_tt|not (eq ff tt)
band_eq_tt_elim_left|eq (band ?a ?b) tt → eq ?a tt
band_eq_tt_elim_right|eq (band ?a ?b) tt → eq ?b tt
-- ENDFINDP -- ENDFINDP