lean2/library/data/bool.lean

144 lines
4.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import general_notation
import logic.core.connectives logic.core.decidable logic.core.inhabited
open eq_ops eq decidable
inductive bool : Type :=
ff : bool,
tt : bool
namespace bool
protected definition rec_on {C : bool → Type} (b : bool) (H₁ : C ff) (H₂ : C tt) : C b :=
rec H₁ H₂ b
protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b :=
rec H₁ H₂ b
definition cond {A : Type} (b : bool) (t e : A) :=
rec_on b e t
theorem dichotomy (b : bool) : b = ff b = tt :=
cases_on b (or.inl rfl) (or.inr rfl)
theorem cond_ff {A : Type} (t e : A) : cond ff t e = e :=
rfl
theorem cond_tt {A : Type} (t e : A) : cond tt t e = t :=
rfl
theorem ff_ne_tt : ¬ ff = tt :=
assume H : ff = tt, absurd
(calc true = cond tt true false : (cond_tt _ _)⁻¹
... = cond ff true false : {H⁻¹}
... = false : cond_ff _ _)
true_ne_false
definition or (a b : bool) :=
rec_on a (rec_on b ff tt) tt
theorem or_tt_left (a : bool) : or tt a = tt :=
rfl
infixl `||` := or
theorem or_tt_right (a : bool) : a || tt = tt :=
cases_on a rfl rfl
theorem or_ff_left (a : bool) : ff || a = a :=
cases_on a rfl rfl
theorem or_ff_right (a : bool) : a || ff = a :=
cases_on a rfl rfl
theorem or_id (a : bool) : a || a = a :=
cases_on a rfl rfl
theorem or_comm (a b : bool) : a || b = b || a :=
cases_on a
(cases_on b rfl rfl)
(cases_on b rfl rfl)
theorem or_assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
cases_on a
(calc (ff || b) || c = b || c : {or_ff_left b}
... = ff || (b || c) : or_ff_left (b || c)⁻¹)
(calc (tt || b) || c = tt || c : {or_tt_left b}
... = tt : or_tt_left c
... = tt || (b || c) : or_tt_left (b || c)⁻¹)
theorem or_to_or {a b : bool} : a || b = tt → a = tt b = tt :=
rec_on a
(assume H : ff || b = tt,
have Hb : b = tt, from (or_ff_left b) ▸ H,
or.inr Hb)
(assume H, or.inl rfl)
definition and (a b : bool) :=
rec_on a ff (rec_on b ff tt)
infixl `&&` := and
theorem and_ff_left (a : bool) : ff && a = ff :=
rfl
theorem and_tt_left (a : bool) : tt && a = a :=
cases_on a rfl rfl
theorem and_ff_right (a : bool) : a && ff = ff :=
cases_on a rfl rfl
theorem and_tt_right (a : bool) : a && tt = a :=
cases_on a rfl rfl
theorem and_id (a : bool) : a && a = a :=
cases_on a rfl rfl
theorem and_comm (a b : bool) : a && b = b && a :=
cases_on a
(cases_on b rfl rfl)
(cases_on b rfl rfl)
theorem and_assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
cases_on a
(calc (ff && b) && c = ff && c : {and_ff_left b}
... = ff : and_ff_left c
... = ff && (b && c) : and_ff_left (b && c)⁻¹)
(calc (tt && b) && c = b && c : {and_tt_left b}
... = tt && (b && c) : and_tt_left (b && c)⁻¹)
theorem and_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
or.elim (dichotomy a)
(assume H0 : a = ff,
absurd
(calc ff = ff && b : (and_ff_left _)⁻¹
... = a && b : {H0⁻¹}
... = tt : H)
ff_ne_tt)
(assume H1 : a = tt, H1)
theorem and_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
and_eq_tt_elim_left (and_comm b a ⬝ H)
definition not (a : bool) :=
rec_on a tt ff
theorem bnot_bnot (a : bool) : not (not a) = a :=
cases_on a rfl rfl
theorem bnot_false : not ff = tt :=
rfl
theorem bnot_true : not tt = ff :=
rfl
protected theorem is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
protected definition has_decidable_eq [instance] : decidable_eq bool :=
take a b : bool,
rec_on a
(rec_on b (inl rfl) (inr ff_ne_tt))
(rec_on b (inr (ne.symm ff_ne_tt)) (inl rfl))
end bool