feat(library/data/bool): do not use !
as notation for bnot, rename band/bor -> and/or
This commit is contained in:
parent
72beb438e6
commit
bc6ebf34be
4 changed files with 66 additions and 69 deletions
|
@ -1,7 +1,7 @@
|
||||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
-- Author: Leonardo de Moura
|
-- Author: Leonardo de Moura
|
||||||
|
import general_notation
|
||||||
import logic.core.connectives logic.core.decidable logic.core.inhabited
|
import logic.core.connectives logic.core.decidable logic.core.inhabited
|
||||||
|
|
||||||
open eq_ops eq decidable
|
open eq_ops eq decidable
|
||||||
|
@ -35,104 +35,102 @@ namespace bool
|
||||||
... = false : cond_ff _ _)
|
... = false : cond_ff _ _)
|
||||||
true_ne_false
|
true_ne_false
|
||||||
|
|
||||||
definition bor (a b : bool) :=
|
definition or (a b : bool) :=
|
||||||
rec_on a (rec_on b ff tt) tt
|
rec_on a (rec_on b ff tt) tt
|
||||||
|
|
||||||
theorem bor_tt_left (a : bool) : bor tt a = tt :=
|
theorem or_tt_left (a : bool) : or tt a = tt :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
infixl `||` := bor
|
infixl `||` := or
|
||||||
|
|
||||||
theorem bor_tt_right (a : bool) : a || tt = tt :=
|
theorem or_tt_right (a : bool) : a || tt = tt :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem bor_ff_left (a : bool) : ff || a = a :=
|
theorem or_ff_left (a : bool) : ff || a = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem bor_ff_right (a : bool) : a || ff = a :=
|
theorem or_ff_right (a : bool) : a || ff = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem bor_id (a : bool) : a || a = a :=
|
theorem or_id (a : bool) : a || a = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem bor_comm (a b : bool) : a || b = b || a :=
|
theorem or_comm (a b : bool) : a || b = b || a :=
|
||||||
cases_on a
|
cases_on a
|
||||||
(cases_on b rfl rfl)
|
(cases_on b rfl rfl)
|
||||||
(cases_on b rfl rfl)
|
(cases_on b rfl rfl)
|
||||||
|
|
||||||
theorem bor_assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
|
theorem or_assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
|
||||||
cases_on a
|
cases_on a
|
||||||
(calc (ff || b) || c = b || c : {bor_ff_left b}
|
(calc (ff || b) || c = b || c : {or_ff_left b}
|
||||||
... = ff || (b || c) : bor_ff_left (b || c)⁻¹)
|
... = ff || (b || c) : or_ff_left (b || c)⁻¹)
|
||||||
(calc (tt || b) || c = tt || c : {bor_tt_left b}
|
(calc (tt || b) || c = tt || c : {or_tt_left b}
|
||||||
... = tt : bor_tt_left c
|
... = tt : or_tt_left c
|
||||||
... = tt || (b || c) : bor_tt_left (b || c)⁻¹)
|
... = tt || (b || c) : or_tt_left (b || c)⁻¹)
|
||||||
|
|
||||||
theorem bor_to_or {a b : bool} : a || b = tt → a = tt ∨ b = tt :=
|
theorem or_to_or {a b : bool} : a || b = tt → a = tt ∨ b = tt :=
|
||||||
rec_on a
|
rec_on a
|
||||||
(assume H : ff || b = tt,
|
(assume H : ff || b = tt,
|
||||||
have Hb : b = tt, from (bor_ff_left b) ▸ H,
|
have Hb : b = tt, from (or_ff_left b) ▸ H,
|
||||||
or.inr Hb)
|
or.inr Hb)
|
||||||
(assume H, or.inl rfl)
|
(assume H, or.inl rfl)
|
||||||
|
|
||||||
definition band (a b : bool) :=
|
definition and (a b : bool) :=
|
||||||
rec_on a ff (rec_on b ff tt)
|
rec_on a ff (rec_on b ff tt)
|
||||||
|
|
||||||
infixl `&&` := band
|
infixl `&&` := and
|
||||||
|
|
||||||
theorem band_ff_left (a : bool) : ff && a = ff :=
|
theorem and_ff_left (a : bool) : ff && a = ff :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem band_tt_left (a : bool) : tt && a = a :=
|
theorem and_tt_left (a : bool) : tt && a = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem band_ff_right (a : bool) : a && ff = ff :=
|
theorem and_ff_right (a : bool) : a && ff = ff :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem band_tt_right (a : bool) : a && tt = a :=
|
theorem and_tt_right (a : bool) : a && tt = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem band_id (a : bool) : a && a = a :=
|
theorem and_id (a : bool) : a && a = a :=
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem band_comm (a b : bool) : a && b = b && a :=
|
theorem and_comm (a b : bool) : a && b = b && a :=
|
||||||
cases_on a
|
cases_on a
|
||||||
(cases_on b rfl rfl)
|
(cases_on b rfl rfl)
|
||||||
(cases_on b rfl rfl)
|
(cases_on b rfl rfl)
|
||||||
|
|
||||||
theorem band_assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
|
theorem and_assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
|
||||||
cases_on a
|
cases_on a
|
||||||
(calc (ff && b) && c = ff && c : {band_ff_left b}
|
(calc (ff && b) && c = ff && c : {and_ff_left b}
|
||||||
... = ff : band_ff_left c
|
... = ff : and_ff_left c
|
||||||
... = ff && (b && c) : band_ff_left (b && c)⁻¹)
|
... = ff && (b && c) : and_ff_left (b && c)⁻¹)
|
||||||
(calc (tt && b) && c = b && c : {band_tt_left b}
|
(calc (tt && b) && c = b && c : {and_tt_left b}
|
||||||
... = tt && (b && c) : band_tt_left (b && c)⁻¹)
|
... = tt && (b && c) : and_tt_left (b && c)⁻¹)
|
||||||
|
|
||||||
theorem band_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
|
theorem and_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
|
||||||
or.elim (dichotomy a)
|
or.elim (dichotomy a)
|
||||||
(assume H0 : a = ff,
|
(assume H0 : a = ff,
|
||||||
absurd
|
absurd
|
||||||
(calc ff = ff && b : (band_ff_left _)⁻¹
|
(calc ff = ff && b : (and_ff_left _)⁻¹
|
||||||
... = a && b : {H0⁻¹}
|
... = a && b : {H0⁻¹}
|
||||||
... = tt : H)
|
... = tt : H)
|
||||||
ff_ne_tt)
|
ff_ne_tt)
|
||||||
(assume H1 : a = tt, H1)
|
(assume H1 : a = tt, H1)
|
||||||
|
|
||||||
theorem band_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
|
theorem and_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
|
||||||
band_eq_tt_elim_left (band_comm b a ⬝ H)
|
and_eq_tt_elim_left (and_comm b a ⬝ H)
|
||||||
|
|
||||||
definition bnot (a : bool) :=
|
definition not (a : bool) :=
|
||||||
rec_on a tt ff
|
rec_on a tt ff
|
||||||
|
|
||||||
notation `!` x:max := bnot x
|
theorem bnot_bnot (a : bool) : not (not a) = a :=
|
||||||
|
|
||||||
theorem bnot_bnot (a : bool) : !!a = a :=
|
|
||||||
cases_on a rfl rfl
|
cases_on a rfl rfl
|
||||||
|
|
||||||
theorem bnot_false : !ff = tt :=
|
theorem bnot_false : not ff = tt :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem bnot_true : !tt = ff :=
|
theorem bnot_true : not tt = ff :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
protected theorem is_inhabited [instance] : inhabited bool :=
|
protected theorem is_inhabited [instance] : inhabited bool :=
|
||||||
|
|
|
@ -45,26 +45,26 @@ infixl `∩` := inter
|
||||||
|
|
||||||
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, and.intro (band_eq_tt_elim_left H) (band_eq_tt_elim_right H))
|
(assume H, and.intro (and_eq_tt_elim_left H) (and_eq_tt_elim_right H))
|
||||||
(assume H,
|
(assume H,
|
||||||
have e1 : A x = tt, from and.elim_left H,
|
have e1 : A x = tt, from and.elim_left H,
|
||||||
have e2 : B x = tt, from and.elim_right H,
|
have e2 : B x = tt, from and.elim_right H,
|
||||||
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band_tt_left tt)
|
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ and_tt_left tt)
|
||||||
|
|
||||||
theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A :=
|
theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A :=
|
||||||
take x, band_id (A x) ▸ iff.rfl
|
take x, and_id (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ :=
|
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ :=
|
||||||
take x, band_ff_right (A x) ▸ iff.rfl
|
take x, and_ff_right (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ :=
|
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ :=
|
||||||
take x, band_ff_left (A x) ▸ iff.rfl
|
take x, and_ff_left (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A :=
|
theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A :=
|
||||||
take x, band_comm (A x) (B x) ▸ iff.rfl
|
take x, and_comm (A x) (B x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) :=
|
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) :=
|
||||||
take x, band_assoc (A x) (B x) (C x) ▸ iff.rfl
|
take x, and_assoc (A x) (B x) (C x) ▸ iff.rfl
|
||||||
|
|
||||||
definition union {T : Type} (A B : set T) : set T :=
|
definition union {T : Type} (A B : set T) : set T :=
|
||||||
λx, A x || B x
|
λx, A x || B x
|
||||||
|
@ -72,26 +72,26 @@ infixl `∪` := union
|
||||||
|
|
||||||
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, bor_to_or H)
|
(assume H, or_to_or H)
|
||||||
(assume H, or.elim H
|
(assume H, or.elim H
|
||||||
(assume Ha : A x = tt,
|
(assume Ha : A x = tt,
|
||||||
show A x || B x = tt, from Ha⁻¹ ▸ bor_tt_left (B x))
|
show A x || B x = tt, from Ha⁻¹ ▸ or_tt_left (B x))
|
||||||
(assume Hb : B x = tt,
|
(assume Hb : B x = tt,
|
||||||
show A x || B x = tt, from Hb⁻¹ ▸ bor_tt_right (A x)))
|
show A x || B x = tt, from Hb⁻¹ ▸ or_tt_right (A x)))
|
||||||
|
|
||||||
theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A :=
|
theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A :=
|
||||||
take x, bor_id (A x) ▸ iff.rfl
|
take x, or_id (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A :=
|
theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A :=
|
||||||
take x, bor_ff_right (A x) ▸ iff.rfl
|
take x, or_ff_right (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A :=
|
theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A :=
|
||||||
take x, bor_ff_left (A x) ▸ iff.rfl
|
take x, or_ff_left (A x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A :=
|
theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A :=
|
||||||
take x, bor_comm (A x) (B x) ▸ iff.rfl
|
take x, or_comm (A x) (B x) ▸ iff.rfl
|
||||||
|
|
||||||
theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) :=
|
theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) :=
|
||||||
take x, bor_assoc (A x) (B x) (C x) ▸ iff.rfl
|
take x, or_assoc (A x) (B x) (C x) ▸ iff.rfl
|
||||||
|
|
||||||
end set
|
end set
|
||||||
|
|
|
@ -65,7 +65,6 @@ precedence `>`:50
|
||||||
|
|
||||||
precedence `&&`:70 -- infixl
|
precedence `&&`:70 -- infixl
|
||||||
precedence `||`:65 -- infixl
|
precedence `||`:65 -- infixl
|
||||||
precedence `!`:85 -- boolean negation, follow by rbp 100
|
|
||||||
|
|
||||||
-- ### set operations
|
-- ### set operations
|
||||||
|
|
||||||
|
|
|
@ -3,26 +3,26 @@
|
||||||
-- BEGINWAIT
|
-- BEGINWAIT
|
||||||
-- ENDWAIT
|
-- ENDWAIT
|
||||||
-- BEGINFINDP
|
-- BEGINFINDP
|
||||||
bool.bor_tt_left|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt
|
bool.and_tt_left|∀ (a : bool), eq (bool.and bool.tt a) a
|
||||||
|
bool.and_tt_right|∀ (a : bool), eq (bool.and a bool.tt) a
|
||||||
bool.tt|bool
|
bool.tt|bool
|
||||||
bool.bor_tt_right|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt
|
bool.or_tt_left|∀ (a : bool), eq (bool.or bool.tt a) bool.tt
|
||||||
bool.band_tt_left|∀ (a : bool), eq (bool.band bool.tt a) a
|
bool.and_eq_tt_elim_left|eq (bool.and ?a ?b) bool.tt → eq ?a bool.tt
|
||||||
bool.band_tt_right|∀ (a : bool), eq (bool.band a bool.tt) a
|
bool.and_eq_tt_elim_right|eq (bool.and ?a ?b) bool.tt → eq ?b bool.tt
|
||||||
bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
|
bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
|
||||||
|
bool.or_tt_right|∀ (a : bool), eq (bool.or a bool.tt) bool.tt
|
||||||
bool.ff_ne_tt|not (eq bool.ff bool.tt)
|
bool.ff_ne_tt|not (eq bool.ff bool.tt)
|
||||||
bool.band_eq_tt_elim_left|eq (bool.band ?a ?b) bool.tt → eq ?a bool.tt
|
|
||||||
bool.band_eq_tt_elim_right|eq (bool.band ?a ?b) bool.tt → eq ?b bool.tt
|
|
||||||
-- ENDFINDP
|
-- ENDFINDP
|
||||||
-- BEGINWAIT
|
-- BEGINWAIT
|
||||||
-- ENDWAIT
|
-- ENDWAIT
|
||||||
-- BEGINFINDP
|
-- BEGINFINDP
|
||||||
tt|bool
|
tt|bool
|
||||||
bor_tt_left|∀ (a : bool), eq (bor tt a) tt
|
and_tt_left|∀ (a : bool), eq (and tt a) a
|
||||||
bor_tt_right|∀ (a : bool), eq (bor a tt) tt
|
and_tt_right|∀ (a : bool), eq (and a tt) a
|
||||||
band_tt_left|∀ (a : bool), eq (band tt a) a
|
or_tt_left|∀ (a : bool), eq (or tt a) tt
|
||||||
band_tt_right|∀ (a : bool), eq (band a tt) a
|
and_eq_tt_elim_left|eq (and ?a ?b) tt → eq ?a tt
|
||||||
|
and_eq_tt_elim_right|eq (and ?a ?b) tt → eq ?b tt
|
||||||
cond_tt|∀ (t e : ?A), eq (cond tt t e) t
|
cond_tt|∀ (t e : ?A), eq (cond tt t e) t
|
||||||
|
or_tt_right|∀ (a : bool), eq (or a tt) tt
|
||||||
ff_ne_tt|not (eq ff tt)
|
ff_ne_tt|not (eq ff tt)
|
||||||
band_eq_tt_elim_left|eq (band ?a ?b) tt → eq ?a tt
|
|
||||||
band_eq_tt_elim_right|eq (band ?a ?b) tt → eq ?b tt
|
|
||||||
-- ENDFINDP
|
-- ENDFINDP
|
||||||
|
|
Loading…
Reference in a new issue