feat(library/theories/topology/continuous.lean): add theorems about continuous functions (includes work by Jacob Gross)

This commit is contained in:
Jeremy Avigad 2016-04-06 16:24:12 -04:00
parent 73271ac2c9
commit c0720d69e3
3 changed files with 324 additions and 1 deletions

View file

@ -14,6 +14,14 @@ structure topology [class] (X : Type) :=
(sUnion_mem_opens : ∀ {S : set (set X)}, S ⊆ opens → ⋃₀ S ∈ opens)
(inter_mem_opens : ∀₀ s ∈ opens, ∀₀ t ∈ opens, s ∩ t ∈ opens)
-- the bundled version
structure TopologicalSpace : Type :=
(carrier : Type) (struct : topology carrier)
attribute TopologicalSpace.carrier [coercion]
attribute TopologicalSpace.struct [instance]
namespace topology
variables {X : Type} [topology X]

View file

@ -0,0 +1,314 @@
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jacob Gross, Jeremy Avigad
Continuous functions.
-/
import theories.topology.basic algebra.category ..move
open algebra eq.ops set topology function category sigma.ops
namespace topology
/- continuity on a set -/
variables {X Y Z : Type} [topology X] [topology Y] [topology Z]
definition continuous_on (f : X → Y) (s : set X) : Prop :=
∀ ⦃t : set Y⦄, Open t → (∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s)
theorem exists_Open_of_continous_on {f : X → Y} {s : set X} {t : set Y} (Ot : Open t)
(H : continuous_on f s) :
∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s := H Ot
theorem Open_preimage_inter_of_continuous_on {f : X → Y} {s : set X} (Os : Open s)
(Hcont : continuous_on f s) {t : set Y} (Ot : Open t) :
Open (f '- t ∩ s) :=
obtain u [Ou Hu], from Hcont Ot,
by rewrite[-Hu]; exact Open_inter Ou Os
theorem continuous_on_of_forall_open {f : X → Y} {s : set X}
(H : ∀ t, Open t → Open (f '- t ∩ s)) :
continuous_on f s :=
take t, assume Ot,
have f '- t ∩ s ∩ s = f '- t ∩ s, by rewrite [inter_assoc, inter_self],
exists.intro (f '- t ∩ s) (and.intro (H t Ot) this)
theorem Open_preimage_of_continuous_on {f : X → Y} {s : set X} (Opens : Open s)
(contfs : continuous_on f s) {t : set Y} (Ot : Open t) (Hpre : f '- t ⊆ s) :
Open (f '- t) :=
have f '- t ∩ s = f '- t, from inter_eq_self_of_subset Hpre,
show Open (f '- t),
by rewrite -this; apply Open_preimage_inter_of_continuous_on Opens contfs Ot
theorem exists_closed_of_continuous_on {f : X → Y} {s : set X}
(contfs : continuous_on f s) {t : set Y} (clt : closed t) :
∃ u, closed u ∧ u ∩ s = f '- t ∩ s :=
obtain v [Ov (Hv : v ∩ s = f '- -t ∩ s)], from contfs clt,
have -v ∩ s = f '- t ∩ s,
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
show ∃ u, closed u ∧ u ∩ s = f '- t ∩ s,
from exists.intro (-v) (and.intro (closed_compl Ov) this)
theorem continuous_on_of_forall_closed' {f : X → Y} {s : set X}
(H : ∀ t, closed t → ∃ u, closed u ∧ u ∩ s = f '- t ∩ s) :
continuous_on f s :=
take t : set Y, assume Ot : Open t,
obtain (v : set X) [(clv : closed v) (Hv : v ∩ s = f '- (-t) ∩ s)], from H (-t) (closed_compl Ot),
have (-v) ∩ s = f '- t ∩ s,
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
from exists.intro (-v) (and.intro clv this)
theorem continuous_on_of_forall_closed {f : X → Y} {s : set X} (closeds : closed s)
(H : ∀ B, closed B → closed (f '- B ∩ s)) : continuous_on f s :=
continuous_on_of_forall_closed'
(λ B HB, exists.intro _ (and.intro (H B HB) (by rewrite [inter_assoc, inter_self])))
theorem closed_preimage_inter_of_continuous_on {f : X → Y} {s : set Y} (cls : closed s)
{t : set X} (clt : closed t) (contft : continuous_on f t) :
closed (f '- s ∩ t) :=
obtain u [clu Hu], from exists_closed_of_continuous_on contft cls,
by rewrite [-Hu]; exact (closed_inter clu clt)
theorem continuous_on_subset {s t : set X} {f : X → Y} (Hs : continuous_on f s) (ts : t ⊆ s) :
continuous_on f t :=
take u, assume Ou,
obtain v [Ov Hv], from Hs Ou,
have v ∩ t = f '- u ∩ t, by rewrite [-inter_eq_self_of_subset_right ts, -*inter_assoc, Hv],
show ∃ v, Open v ∧ v ∩ t = f '- u ∩ t, from exists.intro v (and.intro Ov this)
theorem continous_on_union_of_closed {f : X → Y} {s t : set X} (cls : closed s) (clt : closed t)
(contsf : continuous_on f s) (conttf : continuous_on f t) :
continuous_on f (s t) :=
have ∀ u, closed u → closed (f '- u ∩ (s t)), from
begin
intro u clu,
rewrite [inter_distrib_left],
exact closed_union (closed_preimage_inter_of_continuous_on clu cls contsf)
(closed_preimage_inter_of_continuous_on clu clt conttf)
end,
show continuous_on f (s t),
from continuous_on_of_forall_closed (closed_union cls clt) this
theorem continuous_on_empty (f : X → Y) : continuous_on f ∅ :=
continuous_on_of_forall_open
(take B, assume OpenB, by rewrite[inter_empty]; apply Open_empty)
theorem continuous_on_union {f : X → Y} {s t : set X}
(Opens : Open s) (Opent : Open t) (contsf : continuous_on f s) (conttf : continuous_on f t) :
continuous_on f (s t) :=
continuous_on_of_forall_open
(take B, assume OpenB,
have Open (f '- B ∩ s), from Open_preimage_inter_of_continuous_on Opens contsf OpenB,
have Open (f '- B ∩ t), from Open_preimage_inter_of_continuous_on Opent conttf OpenB,
show Open (f '- B ∩ (s t)),
by rewrite [inter_distrib_left]; apply Open_union; assumption; assumption)
theorem continuous_on_id (s : set X) : continuous_on (@id X) s :=
λ B OpB, exists.intro B (and.intro OpB (by rewrite preimage_id))
theorem continuous_on_comp {s : set X} {f : X → Y} {g : Y → Z}
(Hf : continuous_on f s) (Hg : continuous_on g (f ' s)) : continuous_on (g ∘ f) s :=
take t, assume Ot,
obtain (u : set Y) [(Ou : Open u) (Hu : u ∩ f ' s = g '- t ∩ f ' s)], from Hg Ot,
obtain (v : set X) [(Ov : Open v) (Hv : v ∩ s = f '- u ∩ s)], from Hf Ou,
have s ⊆ f '- (f ' s), from subset_preimage_image s f,
have f '- (u ∩ f ' s) ∩ s = f '- (g '- t ∩ f ' s) ∩ s, by rewrite Hu,
have f '- u ∩ s = f '- (g '- t) ∩ s,
begin
revert this,
rewrite [*preimage_inter, *inter_assoc, *inter_eq_self_of_subset_right `s ⊆ f '- (f ' s)`],
intro H, exact H
end,
show ∃ v, Open v ∧ v ∩ s = (g ∘ f) '- t ∩ s,
from exists.intro v (and.intro Ov (eq.trans Hv this))
theorem continuous_on_comp' {s : set X} {t : set Y} {f : X → Y} {g : Y → Z}
(Hf : continuous_on f s) (Hg : continuous_on g t) (H : f ' s ⊆ t) : continuous_on (g ∘ f) s :=
continuous_on_comp Hf (continuous_on_subset Hg H)
section
open classical
theorem continuous_on_singleton (f : X → Y) (x : X) :
continuous_on f '{x} :=
take s, assume Ops,
if Hx : x ∈ f '- s then
have '{x} ⊆ f '- s, from singleton_subset_of_mem Hx,
exists.intro univ (and.intro Open_univ
(by rewrite [univ_inter, inter_eq_self_of_subset_right this]))
else
have f '- s ∩ '{x} = ∅,
from eq_empty_of_forall_not_mem
(take y, assume ymem,
obtain (Hy : y ∈ f '- s) (Hy' : y ∈ '{x}), from ymem,
have y = x, from eq_of_mem_singleton Hy',
show false, from Hx (by rewrite -this; apply Hy)),
exists.intro ∅ (and.intro Open_empty (by rewrite [this, empty_inter]))
theorem continuous_on_const (c : Y) (s : set X) :
continuous_on (λ x : X, c) s :=
take s, assume Ops,
if cs : c ∈ s then
have (λx, c) '- s = @univ X, from eq_univ_of_forall (take x, mem_preimage cs),
exists.intro univ (and.intro Open_univ (by rewrite this))
else
have (λx, c) '- s = (∅ : set X),
from eq_empty_of_forall_not_mem (take x, assume H, cs (mem_of_mem_preimage H)),
exists.intro ∅ (and.intro Open_empty (by rewrite this))
end
/- pointwise continuity on a set -/
definition continuous_at_on (f : X → Y) (x : X) (s : set X) : Prop :=
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ∩ s ⊆ f '- t
theorem continuous_at_on_of_continuous_on {f : X → Y} {s : set X}
(H : continuous_on f s) ⦃x : X⦄ (xs : x ∈ s) :
continuous_at_on f x s :=
take u, assume (Ou : Open u) (fxu : f x ∈ u),
obtain (t : set X) [(Ot : Open t) (Ht : t ∩ s = f '- u ∩ s)], from H Ou,
have x ∈ f '- u ∩ s, from and.intro fxu xs,
have x ∈ t, by rewrite [-Ht at this]; exact and.left this,
exists.intro t (and.intro Ot (and.intro this (by rewrite Ht; apply inter_subset_left)))
section
open classical
theorem continuous_on_of_forall_continuous_at_on {f : X → Y} {s : set X}
(H : ∀ x, continuous_at_on f x s) :
continuous_on f s :=
take t, assume Ot : Open t,
have H₁ : ∀₀ x ∈ f '- t, ∃ u', Open u' ∧ x ∈ u' ∧ u' ∩ s ⊆ f '- t,
from λ x xmem, H x Ot (mem_of_mem_preimage xmem),
let u := ⋃₀ {u' | ∃ x (Hx : x ∈ f '- t), u' = some (H₁ Hx) } in
have Open u, from Open_sUnion
(take u', assume Hu',
obtain x (Hx : x ∈ f '- t) (u'eq : u' = some (H₁ Hx)), from Hu',
show Open u', by rewrite u'eq; apply and.left (some_spec (H₁ Hx))),
have Hu₁ : u ∩ s ⊆ f '- t, from
take x, assume Hx,
obtain xu xs, from Hx,
obtain u' [[x' (Hx' : x' ∈ f '- t) (u'eq : u' = some (H₁ Hx'))] (xu' : x ∈ u')], from xu,
have u' ∩ s ⊆ f '- t, by rewrite u'eq; exact and.right (and.right (some_spec (H₁ Hx'))),
show x ∈ f '- t, from this (and.intro xu' xs),
have Hu₂ : f '- t ∩ s ⊆ u, from
take x, assume Hx : x ∈ f '- t ∩ s,
obtain xft xs, from Hx,
let u' := some (H₁ xft) in
have x ∈ u', from and.left (and.right (some_spec (H₁ xft))),
show x ∈ u, from exists.intro u' (and.intro (exists.intro x (exists.intro xft rfl)) this),
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
from exists.intro u (and.intro `Open u` (inter_eq_inter_right Hu₁ Hu₂))
end
/- continuity -/
definition continuous (f : X → Y) : Prop := ∀ ⦃s : set Y⦄, Open s → Open (f '- s)
theorem continuous_of_continuous_on_univ {f : X → Y} (H : continuous_on f univ) : continuous f :=
λ s Os, by rewrite [-inter_univ]; exact Open_preimage_inter_of_continuous_on Open_univ H Os
theorem continuous_on_of_continuous {f : X → Y} (s : set X) (H : continuous f) :
continuous_on f s :=
take t, assume Ot, exists.intro (f '- t) (and.intro (H Ot) rfl)
theorem continuous_on_univ_of_continuous {f : X → Y} (H : continuous f) : continuous_on f univ :=
continuous_on_of_continuous univ H
theorem continuous_iff (f : X → Y) : continuous f ↔ continuous_on f univ :=
iff.intro continuous_on_univ_of_continuous continuous_of_continuous_on_univ
theorem Open_preimage_of_continuous {f : X → Y} (H : continuous f) ⦃s : set Y⦄ (Os : Open s) :
Open (f '- s) := H Os
theorem closed_preimage_of_continuous {f : X → Y} (H : continuous f) {s : set Y} (cls : closed s) :
closed (f '- s) :=
by rewrite [↑closed, -preimage_compl]; exact H cls
theorem continuous_id : continuous (@id X) :=
λ s Os, Os
theorem continuous_comp {f : X → Y} {g : Y → Z}
(Hf : continuous f) (Hg : continuous g) : continuous (g ∘ f) :=
λ s Os, Hf (Hg Os)
theorem continuous_const (c : Y) : continuous (λ x : X, c) :=
continuous_of_continuous_on_univ (continuous_on_const c univ)
/- continuity at a point -/
definition continuous_at' (f : X → Y) (x : X) : Prop :=
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ⊆ f '- t
theorem continuous_at_of_continuous_at_on {f : X → Y} {x : X} {s : set X}
(Os : Open s) (xs : x ∈ s) (H : continuous_at_on f x s) :
continuous_at' f x :=
take t, assume Ot fxt,
obtain u Ou xu xssub, from H Ot fxt,
exists.intro (u ∩ s) (and.intro (Open_inter Ou Os)
(and.intro (and.intro xu xs) xssub))
theorem continuous_at_of_continuous_at_on_univ {f : X → Y} {x : X}
(H : continuous_at_on f x univ) :
continuous_at' f x :=
continuous_at_of_continuous_at_on Open_univ !mem_univ H
theorem continuous_at_on_univ_of_continuous_at {f : X → Y} {x : X}
(H : continuous_at' f x) :
continuous_at_on f x univ :=
take t, assume Ot fxt,
obtain u Ou xu usub, from H Ot fxt,
have u ∩ univ ⊆ f '- t, by rewrite inter_univ; apply usub,
exists.intro u (and.intro Ou (and.intro xu this))
theorem continuous_at_iff_continuous_at_on_univ (f : X → Y) (x : X) :
continuous_at' f x ↔ continuous_at_on f x univ :=
iff.intro continuous_at_on_univ_of_continuous_at continuous_at_of_continuous_at_on_univ
/- The Category TOP -/
section TOP
open subtype
private definition TOP_hom (A B : TopologicalSpace) : Type :=
{f : A → B | continuous f}
private definition TOP_ID {A : TopologicalSpace} : TOP_hom A A :=
subtype.tag (@id A) continuous_id
private definition TOP_comp ⦃ A B C : TopologicalSpace ⦄ (g : TOP_hom B C) (f : TOP_hom A B) :
TOP_hom A C :=
subtype.tag (elt_of g ∘ elt_of f)
(continuous_comp (subtype.has_property f) (subtype.has_property g))
private theorem TOP_assoc ⦃A B C D : TopologicalSpace⦄
(h : TOP_hom C D) (g : TOP_hom B C) (f : TOP_hom A B) :
TOP_comp h (TOP_comp g f) = TOP_comp (TOP_comp h g) f :=
subtype.eq rfl
private theorem id_left ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp TOP_ID f = f :=
subtype.eq rfl
private theorem id_right ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp f TOP_ID = f :=
subtype.eq rfl
definition TOP [reducible] [trans_instance] : category TopologicalSpace :=
⦃ category,
hom := TOP_hom,
comp := TOP_comp,
ID := @TOP_ID,
assoc := TOP_assoc,
id_left := id_left,
id_right := id_right
end TOP
end topology

View file

@ -4,3 +4,4 @@ theories.topology
* [filterlim](filterlim.lean) : a general theory of limits, based on filters
* [basic](basic.lean) : open and closed sets, separation axioms, and generated topologies
* [order_topology](order_topology.lean)
* [continuous](continuous.lean) : continuous functions