refactor(library/data/int): use "migrate" command

This commit is contained in:
Leonardo de Moura 2015-05-12 04:24:13 -07:00
parent fa70930ef4
commit d2adf922b7
2 changed files with 8 additions and 433 deletions

View file

@ -631,156 +631,15 @@ section
right_distrib := mul.right_distrib, right_distrib := mul.right_distrib,
mul_comm := mul.comm, mul_comm := mul.comm,
eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero⦄ eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero⦄
end
/- instantiate ring theorems to int -/
section port_algebra
open [classes] algebra
theorem mul.left_comm : ∀a b c : , a * (b * c) = b * (a * c) := algebra.mul.left_comm
theorem mul.right_comm : ∀a b c : , (a * b) * c = (a * c) * b := algebra.mul.right_comm
theorem add.left_comm : ∀a b c : , a + (b + c) = b + (a + c) := algebra.add.left_comm
theorem add.right_comm : ∀a b c : , (a + b) + c = (a + c) + b := algebra.add.right_comm
theorem add.left_cancel : ∀{a b c : }, a + b = a + c → b = c := @algebra.add.left_cancel _ _
theorem add.right_cancel : ∀{a b c : }, a + b = c + b → a = c := @algebra.add.right_cancel _ _
theorem neg_add_cancel_left : ∀a b : , -a + (a + b) = b := algebra.neg_add_cancel_left
theorem neg_add_cancel_right : ∀a b : , a + -b + b = a := algebra.neg_add_cancel_right
theorem neg_eq_of_add_eq_zero : ∀{a b : }, a + b = 0 → -a = b :=
@algebra.neg_eq_of_add_eq_zero _ _
theorem neg_zero : -0 = 0 := algebra.neg_zero
theorem neg_neg : ∀a : , -(-a) = a := algebra.neg_neg
theorem neg.inj : ∀{a b : }, -a = -b → a = b := @algebra.neg.inj _ _
theorem neg_eq_neg_iff_eq : ∀a b : , -a = -b ↔ a = b := algebra.neg_eq_neg_iff_eq
theorem neg_eq_zero_iff_eq_zero : ∀a : , -a = 0 ↔ a = 0 := algebra.neg_eq_zero_iff_eq_zero
theorem eq_neg_of_eq_neg : ∀{a b : }, a = -b → b = -a := @algebra.eq_neg_of_eq_neg _ _
theorem eq_neg_iff_eq_neg : ∀{a b : }, a = -b ↔ b = -a := @algebra.eq_neg_iff_eq_neg _ _
theorem add.right_inv : ∀a : , a + -a = 0 := algebra.add.right_inv
theorem add_neg_cancel_left : ∀a b : , a + (-a + b) = b := algebra.add_neg_cancel_left
theorem add_neg_cancel_right : ∀a b : , a + b + -b = a := algebra.add_neg_cancel_right
theorem neg_add_rev : ∀a b : , -(a + b) = -b + -a := algebra.neg_add_rev
theorem eq_add_neg_of_add_eq : ∀{a b c : }, a + c = b → a = b + -c :=
@algebra.eq_add_neg_of_add_eq _ _
theorem eq_neg_add_of_add_eq : ∀{a b c : }, b + a = c → a = -b + c :=
@algebra.eq_neg_add_of_add_eq _ _
theorem neg_add_eq_of_eq_add : ∀{a b c : }, b = a + c → -a + b = c :=
@algebra.neg_add_eq_of_eq_add _ _
theorem add_neg_eq_of_eq_add : ∀{a b c : }, a = c + b → a + -b = c :=
@algebra.add_neg_eq_of_eq_add _ _
theorem eq_add_of_add_neg_eq : ∀{a b c : }, a + -c = b → a = b + c :=
@algebra.eq_add_of_add_neg_eq _ _
theorem eq_add_of_neg_add_eq : ∀{a b c : }, -b + a = c → a = b + c :=
@algebra.eq_add_of_neg_add_eq _ _
theorem add_eq_of_eq_neg_add : ∀{a b c : }, b = -a + c → a + b = c :=
@algebra.add_eq_of_eq_neg_add _ _
theorem add_eq_of_eq_add_neg : ∀{a b c : }, a = c + -b → a + b = c :=
@algebra.add_eq_of_eq_add_neg _ _
theorem add_eq_iff_eq_neg_add : ∀a b c : , a + b = c ↔ b = -a + c :=
@algebra.add_eq_iff_eq_neg_add _ _
theorem add_eq_iff_eq_add_neg : ∀a b c : , a + b = c ↔ a = c + -b :=
@algebra.add_eq_iff_eq_add_neg _ _
definition sub (a b : ) : := algebra.sub a b definition sub (a b : ) : := algebra.sub a b
infix - := int.sub infix - := int.sub
theorem sub_eq_add_neg : ∀a b : , a - b = a + -b := algebra.sub_eq_add_neg
theorem sub_self : ∀a : , a - a = 0 := algebra.sub_self
theorem sub_add_cancel : ∀a b : , a - b + b = a := algebra.sub_add_cancel
theorem add_sub_cancel : ∀a b : , a + b - b = a := algebra.add_sub_cancel
theorem eq_of_sub_eq_zero : ∀{a b : }, a - b = 0 → a = b := @algebra.eq_of_sub_eq_zero _ _
theorem eq_iff_sub_eq_zero : ∀a b : , a = b ↔ a - b = 0 := algebra.eq_iff_sub_eq_zero
theorem zero_sub : ∀a : , 0 - a = -a := algebra.zero_sub
theorem sub_zero : ∀a : , a - 0 = a := algebra.sub_zero
theorem sub_neg_eq_add : ∀a b : , a - (-b) = a + b := algebra.sub_neg_eq_add
theorem neg_sub : ∀a b : , -(a - b) = b - a := algebra.neg_sub
theorem add_sub : ∀a b c : , a + (b - c) = a + b - c := algebra.add_sub
theorem sub_add_eq_sub_sub_swap : ∀a b c : , a - (b + c) = a - c - b :=
algebra.sub_add_eq_sub_sub_swap
theorem sub_eq_iff_eq_add : ∀a b c : , a - b = c ↔ a = c + b := algebra.sub_eq_iff_eq_add
theorem eq_sub_iff_add_eq : ∀a b c : , a = b - c ↔ a + c = b := algebra.eq_sub_iff_add_eq
theorem eq_iff_eq_of_sub_eq_sub : ∀{a b c d : }, a - b = c - d → (a = b ↔ c = d) :=
@algebra.eq_iff_eq_of_sub_eq_sub _ _
theorem eq_sub_of_add_eq : ∀{a b c : }, a + c = b → a = b - c := @algebra.eq_sub_of_add_eq _ _
theorem sub_eq_of_eq_add : ∀{a b c : }, a = c + b → a - b = c := @algebra.sub_eq_of_eq_add _ _
theorem eq_add_of_sub_eq : ∀{a b c : }, a - c = b → a = b + c := @algebra.eq_add_of_sub_eq _ _
theorem add_eq_of_eq_sub : ∀{a b c : }, a = c - b → a + b = c := @algebra.add_eq_of_eq_sub _ _
theorem sub_add_eq_sub_sub : ∀a b c : , a - (b + c) = a - b - c := algebra.sub_add_eq_sub_sub
theorem neg_add_eq_sub : ∀a b : , -a + b = b - a := algebra.neg_add_eq_sub
theorem neg_add : ∀a b : , -(a + b) = -a + -b := algebra.neg_add
theorem sub_add_eq_add_sub : ∀a b c : , a - b + c = a + c - b := algebra.sub_add_eq_add_sub
theorem sub_sub_ : ∀a b c : , a - b - c = a - (b + c) := algebra.sub_sub
theorem add_sub_add_left_eq_sub : ∀a b c : , (c + a) - (c + b) = a - b :=
algebra.add_sub_add_left_eq_sub
theorem eq_sub_of_add_eq' : ∀{a b c : }, c + a = b → a = b - c := @algebra.eq_sub_of_add_eq' _ _
theorem sub_eq_of_eq_add' : ∀{a b c : }, a = b + c → a - b = c := @algebra.sub_eq_of_eq_add' _ _
theorem eq_add_of_sub_eq' : ∀{a b c : }, a - b = c → a = b + c := @algebra.eq_add_of_sub_eq' _ _
theorem add_eq_of_eq_sub' : ∀{a b c : }, b = c - a → a + b = c := @algebra.add_eq_of_eq_sub' _ _
theorem ne_zero_of_mul_ne_zero_right : ∀{a b : }, a * b ≠ 0 → a ≠ 0 :=
@algebra.ne_zero_of_mul_ne_zero_right _ _
theorem ne_zero_of_mul_ne_zero_left : ∀{a b : }, a * b ≠ 0 → b ≠ 0 :=
@algebra.ne_zero_of_mul_ne_zero_left _ _
definition dvd (a b : ) : Prop := algebra.dvd a b definition dvd (a b : ) : Prop := algebra.dvd a b
notation a b := dvd a b notation a b := dvd a b
theorem dvd.intro : ∀{a b c : } (H : a * c = b), a b := @algebra.dvd.intro _ _
theorem dvd.intro_left : ∀{a b c : } (H : c * a = b), a b := @algebra.dvd.intro_left _ _ migrate from algebra with int
theorem exists_eq_mul_right_of_dvd : ∀{a b : } (H : a b), ∃c, b = a * c := replacing sub → sub, dvd → dvd
@algebra.exists_eq_mul_right_of_dvd _ _ end
theorem dvd.elim : ∀{P : Prop} {a b : } (H₁ : a b) (H₂ : ∀c, b = a * c → P), P :=
@algebra.dvd.elim _ _
theorem exists_eq_mul_left_of_dvd : ∀{a b : } (H : a b), ∃c, b = c * a :=
@algebra.exists_eq_mul_left_of_dvd _ _
theorem dvd.elim_left : ∀{P : Prop} {a b : } (H₁ : a b) (H₂ : ∀c, b = c * a → P), P :=
@algebra.dvd.elim_left _ _
theorem dvd.refl : ∀a : , (a a) := algebra.dvd.refl
theorem dvd.trans : ∀{a b c : } (H₁ : a b) (H₂ : b c), a c := @algebra.dvd.trans _ _
theorem eq_zero_of_zero_dvd : ∀{a : } (H : 0 a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _
theorem dvd_zero : ∀a : , a 0 := algebra.dvd_zero
theorem one_dvd : ∀a : , 1 a := algebra.one_dvd
theorem dvd_mul_right : ∀a b : , a a * b := algebra.dvd_mul_right
theorem dvd_mul_left : ∀a b : , a b * a := algebra.dvd_mul_left
theorem dvd_mul_of_dvd_left : ∀{a b : } (H : a b) (c : ), a b * c :=
@algebra.dvd_mul_of_dvd_left _ _
theorem dvd_mul_of_dvd_right : ∀{a b : } (H : a b) (c : ), a c * b :=
@algebra.dvd_mul_of_dvd_right _ _
theorem mul_dvd_mul : ∀{a b c d : }, a b → c d → a * c b * d :=
@algebra.mul_dvd_mul _ _
theorem dvd_of_mul_right_dvd : ∀{a b c : }, a * b c → a c :=
@algebra.dvd_of_mul_right_dvd _ _
theorem dvd_of_mul_left_dvd : ∀{a b c : }, a * b c → b c :=
@algebra.dvd_of_mul_left_dvd _ _
theorem dvd_add : ∀{a b c : }, a b → a c → a b + c := @algebra.dvd_add _ _
theorem zero_mul : ∀a : , 0 * a = 0 := algebra.zero_mul
theorem mul_zero : ∀a : , a * 0 = 0 := algebra.mul_zero
theorem neg_mul_eq_neg_mul : ∀a b : , -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
theorem neg_mul_eq_mul_neg : ∀a b : , -(a * b) = a * -b := algebra.neg_mul_eq_mul_neg
theorem neg_mul_neg : ∀a b : , -a * -b = a * b := algebra.neg_mul_neg
theorem neg_mul_comm : ∀a b : , -a * b = a * -b := algebra.neg_mul_comm
theorem neg_eq_neg_one_mul : ∀a : , -a = -1 * a := algebra.neg_eq_neg_one_mul
theorem mul_sub_left_distrib : ∀a b c : , a * (b - c) = a * b - a * c :=
algebra.mul_sub_left_distrib
theorem mul_sub_right_distrib : ∀a b c : , (a - b) * c = a * c - b * c :=
algebra.mul_sub_right_distrib
theorem mul_add_eq_mul_add_iff_sub_mul_add_eq :
∀a b c d e : , a * e + c = b * e + d ↔ (a - b) * e + c = d :=
algebra.mul_add_eq_mul_add_iff_sub_mul_add_eq
theorem mul_self_sub_mul_self_eq : ∀a b : , a * a - b * b = (a + b) * (a - b) :=
algebra.mul_self_sub_mul_self_eq
theorem mul_self_sub_one_eq : ∀a : , a * a - 1 = (a + 1) * (a - 1) :=
algebra.mul_self_sub_one_eq
theorem dvd_neg_iff_dvd : ∀a b : , a -b ↔ a b := algebra.dvd_neg_iff_dvd
theorem neg_dvd_iff_dvd : ∀a b : , -a b ↔ a b := algebra.neg_dvd_iff_dvd
theorem dvd_sub : ∀a b c : , a b → a c → a b - c := algebra.dvd_sub
theorem mul_ne_zero : ∀{a b : }, a ≠ 0 → b ≠ 0 → a * b ≠ 0 := @algebra.mul_ne_zero _ _
theorem mul.cancel_right : ∀{a b c : }, a ≠ 0 → b * a = c * a → b = c :=
@algebra.mul.cancel_right _ _
theorem mul.cancel_left : ∀{a b c : }, a ≠ 0 → a * b = a * c → b = c :=
@algebra.mul.cancel_left _ _
theorem mul_self_eq_mul_self_iff : ∀a b : , a * a = b * b ↔ a = b a = -b :=
algebra.mul_self_eq_mul_self_iff
theorem mul_self_eq_one_iff : ∀a : , a * a = 1 ↔ a = 1 a = -1 :=
algebra.mul_self_eq_one_iff
theorem dvd_of_mul_dvd_mul_left : ∀{a b c : }, a ≠ 0 → a*b a*c → b c :=
@algebra.dvd_of_mul_dvd_mul_left _ _
theorem dvd_of_mul_dvd_mul_right : ∀{a b c : }, a ≠ 0 → b*a c*a → b c :=
@algebra.dvd_of_mul_dvd_mul_right _ _
end port_algebra
/- additional properties -/ /- additional properties -/

View file

@ -242,306 +242,22 @@ section
⦃algebra.decidable_linear_ordered_comm_ring, ⦃algebra.decidable_linear_ordered_comm_ring,
int.linear_ordered_comm_ring, int.linear_ordered_comm_ring,
decidable_lt := decidable_lt⦄ decidable_lt := decidable_lt⦄
end
/- instantiate ordered ring theorems to int -/
section port_algebra
open [classes] algebra
definition ge [reducible] (a b : ) := algebra.has_le.ge a b definition ge [reducible] (a b : ) := algebra.has_le.ge a b
definition gt [reducible] (a b : ) := algebra.has_lt.gt a b definition gt [reducible] (a b : ) := algebra.has_lt.gt a b
infix >= := int.ge infix >= := int.ge
infix ≥ := int.ge infix ≥ := int.ge
infix > := int.gt infix > := int.gt
definition decidable_ge [instance] (a b : ) : decidable (a ≥ b) := definition decidable_ge [instance] (a b : ) : decidable (a ≥ b) :=
show decidable (b ≤ a), from _ show decidable (b ≤ a), from _
definition decidable_gt [instance] (a b : ) : decidable (a > b) := definition decidable_gt [instance] (a b : ) : decidable (a > b) :=
show decidable (b < a), from _ show decidable (b < a), from _
definition sign : ∀a : , := algebra.sign
theorem ge.trans: ∀{a b c : }, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _
theorem gt.trans: ∀{a b c : }, a > b → b > c → a > c := @algebra.gt.trans _ _
theorem ne_of_gt: ∀{a b : }, a > b → a ≠ b := @algebra.ne_of_gt _ _
theorem gt_of_gt_of_ge : ∀{a b c : }, a > b → b ≥ c → a > c := @algebra.gt_of_gt_of_ge _ _
theorem gt_of_ge_of_gt : ∀{a b c : }, a ≥ b → b > c → a > c := @algebra.gt_of_ge_of_gt _ _
theorem lt.asymm : ∀{a b : }, a < b → ¬ b < a := @algebra.lt.asymm _ _
theorem lt_of_le_of_ne : ∀{a b : }, a ≤ b → a ≠ b → a < b := @algebra.lt_of_le_of_ne _ _
theorem lt_of_lt_of_le : ∀{a b c : }, a < b → b ≤ c → a < c := @algebra.lt_of_lt_of_le _ _
theorem lt_of_le_of_lt : ∀{a b c : }, a ≤ b → b < c → a < c := @algebra.lt_of_le_of_lt _ _
theorem not_le_of_lt : ∀{a b : }, a < b → ¬ b ≤ a := @algebra.not_le_of_lt _ _
theorem not_lt_of_le : ∀{a b : }, a ≤ b → ¬ b < a := @algebra.not_lt_of_le _ _
theorem lt_or_eq_of_le : ∀{a b : }, a ≤ b → a < b a = b := @algebra.lt_or_eq_of_le _ _
theorem lt.trichotomy : ∀a b : , a < b a = b b < a := algebra.lt.trichotomy
theorem lt.by_cases : ∀{a b : } {P : Prop}, (a < b → P) → (a = b → P) → (b < a → P) → P :=
@algebra.lt.by_cases _ _
theorem le_of_not_lt : ∀{a b : }, ¬ a < b → b ≤ a := @algebra.le_of_not_lt _ _
theorem lt_of_not_le : ∀{a b : }, ¬ a ≤ b → b < a := @algebra.lt_of_not_le _ _
theorem lt_or_ge : ∀a b : , a < b a ≥ b := @algebra.lt_or_ge _ _
theorem le_or_gt : ∀a b : , a ≤ b a > b := @algebra.le_or_gt _ _
theorem lt_or_gt_of_ne : ∀{a b : }, a ≠ b → a < b a > b := @algebra.lt_or_gt_of_ne _ _
theorem add_le_add_right : ∀{a b : }, a ≤ b → ∀c : , a + c ≤ b + c :=
@algebra.add_le_add_right _ _
theorem add_le_add : ∀{a b c d : }, a ≤ b → c ≤ d → a + c ≤ b + d := @algebra.add_le_add _ _
theorem add_lt_add_left : ∀{a b : }, a < b → ∀c : , c + a < c + b :=
@algebra.add_lt_add_left _ _
theorem add_lt_add_right : ∀{a b : }, a < b → ∀c : , a + c < b + c :=
@algebra.add_lt_add_right _ _
theorem le_add_of_nonneg_right : ∀{a b : }, b ≥ 0 → a ≤ a + b :=
@algebra.le_add_of_nonneg_right _ _
theorem le_add_of_nonneg_left : ∀{a b : }, b ≥ 0 → a ≤ b + a :=
@algebra.le_add_of_nonneg_left _ _
theorem add_lt_add : ∀{a b c d : }, a < b → c < d → a + c < b + d := @algebra.add_lt_add _ _
theorem add_lt_add_of_le_of_lt : ∀{a b c d : }, a ≤ b → c < d → a + c < b + d :=
@algebra.add_lt_add_of_le_of_lt _ _
theorem add_lt_add_of_lt_of_le : ∀{a b c d : }, a < b → c ≤ d → a + c < b + d :=
@algebra.add_lt_add_of_lt_of_le _ _
theorem lt_add_of_pos_right : ∀{a b : }, b > 0 → a < a + b := @algebra.lt_add_of_pos_right _ _
theorem lt_add_of_pos_left : ∀{a b : }, b > 0 → a < b + a := @algebra.lt_add_of_pos_left _ _
theorem le_of_add_le_add_left : ∀{a b c : }, a + b ≤ a + c → b ≤ c :=
@algebra.le_of_add_le_add_left _ _
theorem le_of_add_le_add_right : ∀{a b c : }, a + b ≤ c + b → a ≤ c :=
@algebra.le_of_add_le_add_right _ _
theorem lt_of_add_lt_add_left : ∀{a b c : }, a + b < a + c → b < c :=
@algebra.lt_of_add_lt_add_left _ _
theorem lt_of_add_lt_add_right : ∀{a b c : }, a + b < c + b → a < c :=
@algebra.lt_of_add_lt_add_right _ _
theorem add_le_add_left_iff : ∀a b c : , a + b ≤ a + c ↔ b ≤ c := algebra.add_le_add_left_iff
theorem add_le_add_right_iff : ∀a b c : , a + b ≤ c + b ↔ a ≤ c := algebra.add_le_add_right_iff
theorem add_lt_add_left_iff : ∀a b c : , a + b < a + c ↔ b < c := algebra.add_lt_add_left_iff
theorem add_lt_add_right_iff : ∀a b c : , a + b < c + b ↔ a < c := algebra.add_lt_add_right_iff
theorem add_nonneg : ∀{a b : }, 0 ≤ a → 0 ≤ b → 0 ≤ a + b := @algebra.add_nonneg _ _
theorem add_pos : ∀{a b : }, 0 < a → 0 < b → 0 < a + b := @algebra.add_pos _ _
theorem add_pos_of_pos_of_nonneg : ∀{a b : }, 0 < a → 0 ≤ b → 0 < a + b :=
@algebra.add_pos_of_pos_of_nonneg _ _
theorem add_pos_of_nonneg_of_pos : ∀{a b : }, 0 ≤ a → 0 < b → 0 < a + b :=
@algebra.add_pos_of_nonneg_of_pos _ _
theorem add_nonpos : ∀{a b : }, a ≤ 0 → b ≤ 0 → a + b ≤ 0 :=
@algebra.add_nonpos _ _
theorem add_neg : ∀{a b : }, a < 0 → b < 0 → a + b < 0 :=
@algebra.add_neg _ _
theorem add_neg_of_neg_of_nonpos : ∀{a b : }, a < 0 → b ≤ 0 → a + b < 0 :=
@algebra.add_neg_of_neg_of_nonpos _ _
theorem add_neg_of_nonpos_of_neg : ∀{a b : }, a ≤ 0 → b < 0 → a + b < 0 :=
@algebra.add_neg_of_nonpos_of_neg _ _
theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg : ∀{a b : },
0 ≤ a → 0 ≤ b → (a + b = 0 ↔ a = 0 ∧ b = 0) :=
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _
theorem le_add_of_nonneg_of_le : ∀{a b c : }, 0 ≤ a → b ≤ c → b ≤ a + c :=
@algebra.le_add_of_nonneg_of_le _ _
theorem le_add_of_le_of_nonneg : ∀{a b c : }, b ≤ c → 0 ≤ a → b ≤ c + a :=
@algebra.le_add_of_le_of_nonneg _ _
theorem lt_add_of_pos_of_le : ∀{a b c : }, 0 < a → b ≤ c → b < a + c :=
@algebra.lt_add_of_pos_of_le _ _
theorem lt_add_of_le_of_pos : ∀{a b c : }, b ≤ c → 0 < a → b < c + a :=
@algebra.lt_add_of_le_of_pos _ _
theorem add_le_of_nonpos_of_le : ∀{a b c : }, a ≤ 0 → b ≤ c → a + b ≤ c :=
@algebra.add_le_of_nonpos_of_le _ _
theorem add_le_of_le_of_nonpos : ∀{a b c : }, b ≤ c → a ≤ 0 → b + a ≤ c :=
@algebra.add_le_of_le_of_nonpos _ _
theorem add_lt_of_neg_of_le : ∀{a b c : }, a < 0 → b ≤ c → a + b < c :=
@algebra.add_lt_of_neg_of_le _ _
theorem add_lt_of_le_of_neg : ∀{a b c : }, b ≤ c → a < 0 → b + a < c :=
@algebra.add_lt_of_le_of_neg _ _
theorem lt_add_of_nonneg_of_lt : ∀{a b c : }, 0 ≤ a → b < c → b < a + c :=
@algebra.lt_add_of_nonneg_of_lt _ _
theorem lt_add_of_lt_of_nonneg : ∀{a b c : }, b < c → 0 ≤ a → b < c + a :=
@algebra.lt_add_of_lt_of_nonneg _ _
theorem lt_add_of_pos_of_lt : ∀{a b c : }, 0 < a → b < c → b < a + c :=
@algebra.lt_add_of_pos_of_lt _ _
theorem lt_add_of_lt_of_pos : ∀{a b c : }, b < c → 0 < a → b < c + a :=
@algebra.lt_add_of_lt_of_pos _ _
theorem add_lt_of_nonpos_of_lt : ∀{a b c : }, a ≤ 0 → b < c → a + b < c :=
@algebra.add_lt_of_nonpos_of_lt _ _
theorem add_lt_of_lt_of_nonpos : ∀{a b c : }, b < c → a ≤ 0 → b + a < c :=
@algebra.add_lt_of_lt_of_nonpos _ _
theorem add_lt_of_neg_of_lt : ∀{a b c : }, a < 0 → b < c → a + b < c :=
@algebra.add_lt_of_neg_of_lt _ _
theorem add_lt_of_lt_of_neg : ∀{a b c : }, b < c → a < 0 → b + a < c :=
@algebra.add_lt_of_lt_of_neg _ _
theorem neg_le_neg : ∀{a b : }, a ≤ b → -b ≤ -a := @algebra.neg_le_neg _ _
theorem le_of_neg_le_neg : ∀{a b : }, -b ≤ -a → a ≤ b := @algebra.le_of_neg_le_neg _ _
theorem neg_le_neg_iff_le : ∀a b : , -a ≤ -b ↔ b ≤ a := algebra.neg_le_neg_iff_le
theorem nonneg_of_neg_nonpos : ∀{a : }, -a ≤ 0 → 0 ≤ a := @algebra.nonneg_of_neg_nonpos _ _
theorem neg_nonpos_of_nonneg : ∀{a : }, 0 ≤ a → -a ≤ 0 := @algebra.neg_nonpos_of_nonneg _ _
theorem neg_nonpos_iff_nonneg : ∀a : , -a ≤ 0 ↔ 0 ≤ a := algebra.neg_nonpos_iff_nonneg
theorem nonpos_of_neg_nonneg : ∀{a : }, 0 ≤ -a → a ≤ 0 := @algebra.nonpos_of_neg_nonneg _ _
theorem neg_nonneg_of_nonpos : ∀{a : }, a ≤ 0 → 0 ≤ -a := @algebra.neg_nonneg_of_nonpos _ _
theorem neg_nonneg_iff_nonpos : ∀a : , 0 ≤ -a ↔ a ≤ 0 := algebra.neg_nonneg_iff_nonpos
theorem neg_lt_neg : ∀{a b : }, a < b → -b < -a := @algebra.neg_lt_neg _ _
theorem lt_of_neg_lt_neg : ∀{a b : }, -b < -a → a < b := @algebra.lt_of_neg_lt_neg _ _
theorem neg_lt_neg_iff_lt : ∀a b : , -a < -b ↔ b < a := algebra.neg_lt_neg_iff_lt
theorem pos_of_neg_neg : ∀{a : }, -a < 0 → 0 < a := @algebra.pos_of_neg_neg _ _
theorem neg_neg_of_pos : ∀{a : }, 0 < a → -a < 0 := @algebra.neg_neg_of_pos _ _
theorem neg_neg_iff_pos : ∀a : , -a < 0 ↔ 0 < a := algebra.neg_neg_iff_pos
theorem neg_of_neg_pos : ∀{a : }, 0 < -a → a < 0 := @algebra.neg_of_neg_pos _ _
theorem neg_pos_of_neg : ∀{a : }, a < 0 → 0 < -a := @algebra.neg_pos_of_neg _ _
theorem neg_pos_iff_neg : ∀a : , 0 < -a ↔ a < 0 := algebra.neg_pos_iff_neg
theorem le_neg_iff_le_neg : ∀a b : , a ≤ -b ↔ b ≤ -a := algebra.le_neg_iff_le_neg
theorem neg_le_iff_neg_le : ∀a b : , -a ≤ b ↔ -b ≤ a := algebra.neg_le_iff_neg_le
theorem lt_neg_iff_lt_neg : ∀a b : , a < -b ↔ b < -a := algebra.lt_neg_iff_lt_neg
theorem neg_lt_iff_neg_lt : ∀a b : , -a < b ↔ -b < a := algebra.neg_lt_iff_neg_lt
theorem sub_nonneg_iff_le : ∀a b : , 0 ≤ a - b ↔ b ≤ a := algebra.sub_nonneg_iff_le
theorem sub_nonpos_iff_le : ∀a b : , a - b ≤ 0 ↔ a ≤ b := algebra.sub_nonpos_iff_le
theorem sub_pos_iff_lt : ∀a b : , 0 < a - b ↔ b < a := algebra.sub_pos_iff_lt
theorem sub_neg_iff_lt : ∀a b : , a - b < 0 ↔ a < b := algebra.sub_neg_iff_lt
theorem add_le_iff_le_neg_add : ∀a b c : , a + b ≤ c ↔ b ≤ -a + c :=
algebra.add_le_iff_le_neg_add
theorem add_le_iff_le_sub_left : ∀a b c : , a + b ≤ c ↔ b ≤ c - a :=
algebra.add_le_iff_le_sub_left
theorem add_le_iff_le_sub_right : ∀a b c : , a + b ≤ c ↔ a ≤ c - b :=
algebra.add_le_iff_le_sub_right
theorem le_add_iff_neg_add_le : ∀a b c : , a ≤ b + c ↔ -b + a ≤ c :=
algebra.le_add_iff_neg_add_le
theorem le_add_iff_sub_left_le : ∀a b c : , a ≤ b + c ↔ a - b ≤ c :=
algebra.le_add_iff_sub_left_le
theorem le_add_iff_sub_right_le : ∀a b c : , a ≤ b + c ↔ a - c ≤ b :=
algebra.le_add_iff_sub_right_le
theorem add_lt_iff_lt_neg_add_left : ∀a b c : , a + b < c ↔ b < -a + c :=
algebra.add_lt_iff_lt_neg_add_left
theorem add_lt_iff_lt_neg_add_right : ∀a b c : , a + b < c ↔ a < -b + c :=
algebra.add_lt_iff_lt_neg_add_right
theorem add_lt_iff_lt_sub_left : ∀a b c : , a + b < c ↔ b < c - a :=
algebra.add_lt_iff_lt_sub_left
theorem add_lt_add_iff_lt_sub_right : ∀a b c : , a + b < c ↔ a < c - b :=
algebra.add_lt_add_iff_lt_sub_right
theorem lt_add_iff_neg_add_lt_left : ∀a b c : , a < b + c ↔ -b + a < c :=
algebra.lt_add_iff_neg_add_lt_left
theorem lt_add_iff_neg_add_lt_right : ∀a b c : , a < b + c ↔ -c + a < b :=
algebra.lt_add_iff_neg_add_lt_right
theorem lt_add_iff_sub_lt_left : ∀a b c : , a < b + c ↔ a - b < c :=
algebra.lt_add_iff_sub_lt_left
theorem lt_add_iff_sub_lt_right : ∀a b c : , a < b + c ↔ a - c < b :=
algebra.lt_add_iff_sub_lt_right
theorem le_iff_le_of_sub_eq_sub : ∀{a b c d : }, a - b = c - d → (a ≤ b ↔ c ≤ d) :=
@algebra.le_iff_le_of_sub_eq_sub _ _
theorem lt_iff_lt_of_sub_eq_sub : ∀{a b c d : }, a - b = c - d → (a < b ↔ c < d) :=
@algebra.lt_iff_lt_of_sub_eq_sub _ _
theorem sub_le_sub_left : ∀{a b : }, a ≤ b → ∀c : , c - b ≤ c - a :=
@algebra.sub_le_sub_left _ _
theorem sub_le_sub_right : ∀{a b : }, a ≤ b → ∀c : , a - c ≤ b - c :=
@algebra.sub_le_sub_right _ _
theorem sub_le_sub : ∀{a b c d : }, a ≤ b → c ≤ d → a - d ≤ b - c :=
@algebra.sub_le_sub _ _
theorem sub_lt_sub_left : ∀{a b : }, a < b → ∀c : , c - b < c - a :=
@algebra.sub_lt_sub_left _ _
theorem sub_lt_sub_right : ∀{a b : }, a < b → ∀c : , a - c < b - c :=
@algebra.sub_lt_sub_right _ _
theorem sub_lt_sub : ∀{a b c d : }, a < b → c < d → a - d < b - c :=
@algebra.sub_lt_sub _ _
theorem sub_lt_sub_of_le_of_lt : ∀{a b c d : }, a ≤ b → c < d → a - d < b - c :=
@algebra.sub_lt_sub_of_le_of_lt _ _
theorem sub_lt_sub_of_lt_of_le : ∀{a b c d : }, a < b → c ≤ d → a - d < b - c :=
@algebra.sub_lt_sub_of_lt_of_le _ _
theorem sub_le_self : ∀(a : ) {b : }, b ≥ 0 → a - b ≤ a := algebra.sub_le_self
theorem sub_lt_self : ∀(a : ) {b : }, b > 0 → a - b < a := algebra.sub_lt_self
theorem eq_zero_of_neg_eq : ∀{a : }, -a = a → a = 0 := @algebra.eq_zero_of_neg_eq _ _
definition abs : := algebra.abs definition abs : := algebra.abs
theorem abs_of_nonneg : ∀{a : }, a ≥ 0 → abs a = a := @algebra.abs_of_nonneg _ _ migrate from algebra with int
theorem abs_of_pos : ∀{a : }, a > 0 → abs a = a := @algebra.abs_of_pos _ _ replacing has_le.ge → ge, has_lt.gt → gt, sign → sign, abs → abs, dvd → dvd, sub → sub
theorem abs_of_neg : ∀{a : }, a < 0 → abs a = -a := @algebra.abs_of_neg _ _ end
theorem abs_zero : abs 0 = 0 := algebra.abs_zero
theorem abs_of_nonpos : ∀{a : }, a ≤ 0 → abs a = -a := @algebra.abs_of_nonpos _ _
theorem abs_neg : ∀a : , abs (-a) = abs a := algebra.abs_neg
theorem abs_nonneg : ∀a : , abs a ≥ 0 := algebra.abs_nonneg
theorem abs_abs : ∀a : , abs (abs a) = abs a := algebra.abs_abs
theorem le_abs_self : ∀a : , a ≤ abs a := algebra.le_abs_self
theorem neg_le_abs_self : ∀a : , -a ≤ abs a := algebra.neg_le_abs_self
theorem eq_zero_of_abs_eq_zero : ∀{a : }, abs a = 0 → a = 0 := @algebra.eq_zero_of_abs_eq_zero _ _
theorem abs_eq_zero_iff_eq_zero : ∀a : , abs a = 0 ↔ a = 0 := algebra.abs_eq_zero_iff_eq_zero
theorem abs_pos_of_pos : ∀{a : }, a > 0 → abs a > 0 := @algebra.abs_pos_of_pos _ _
theorem abs_pos_of_neg : ∀{a : }, a < 0 → abs a > 0 := @algebra.abs_pos_of_neg _ _
theorem abs_pos_of_ne_zero : ∀{a : }, a ≠ 0 → abs a > 0 := @algebra.abs_pos_of_ne_zero _ _
theorem abs_sub : ∀a b : , abs (a - b) = abs (b - a) := algebra.abs_sub
theorem abs.by_cases : ∀{P : → Prop}, ∀{a : }, P a → P (-a) → P (abs a) :=
@algebra.abs.by_cases _ _
theorem abs_le_of_le_of_neg_le : ∀{a b : }, a ≤ b → -a ≤ b → abs a ≤ b :=
@algebra.abs_le_of_le_of_neg_le _ _
theorem abs_lt_of_lt_of_neg_lt : ∀{a b : }, a < b → -a < b → abs a < b :=
@algebra.abs_lt_of_lt_of_neg_lt _ _
theorem abs_add_le_abs_add_abs : ∀a b : , abs (a + b) ≤ abs a + abs b :=
algebra.abs_add_le_abs_add_abs
theorem abs_sub_abs_le_abs_sub : ∀a b : , abs a - abs b ≤ abs (a - b) :=
algebra.abs_sub_abs_le_abs_sub
theorem mul_le_mul_of_nonneg_left : ∀{a b c : }, a ≤ b → 0 ≤ c → c * a ≤ c * b :=
@algebra.mul_le_mul_of_nonneg_left _ _
theorem mul_le_mul_of_nonneg_right : ∀{a b c : }, a ≤ b → 0 ≤ c → a * c ≤ b * c :=
@algebra.mul_le_mul_of_nonneg_right _ _
theorem mul_le_mul : ∀{a b c d : }, a ≤ c → b ≤ d → 0 ≤ b → 0 ≤ c → a * b ≤ c * d :=
@algebra.mul_le_mul _ _
theorem mul_nonpos_of_nonneg_of_nonpos : ∀{a b : }, a ≥ 0 → b ≤ 0 → a * b ≤ 0 :=
@algebra.mul_nonpos_of_nonneg_of_nonpos _ _
theorem mul_nonpos_of_nonpos_of_nonneg : ∀{a b : }, a ≤ 0 → b ≥ 0 → a * b ≤ 0 :=
@algebra.mul_nonpos_of_nonpos_of_nonneg _ _
theorem mul_lt_mul_of_pos_left : ∀{a b c : }, a < b → 0 < c → c * a < c * b :=
@algebra.mul_lt_mul_of_pos_left _ _
theorem mul_lt_mul_of_pos_right : ∀{a b c : }, a < b → 0 < c → a * c < b * c :=
@algebra.mul_lt_mul_of_pos_right _ _
theorem mul_lt_mul : ∀{a b c d : }, a < c → b ≤ d → 0 < b → 0 ≤ c → a * b < c * d :=
@algebra.mul_lt_mul _ _
theorem mul_neg_of_pos_of_neg : ∀{a b : }, a > 0 → b < 0 → a * b < 0 :=
@algebra.mul_neg_of_pos_of_neg _ _
theorem mul_neg_of_neg_of_pos : ∀{a b : }, a < 0 → b > 0 → a * b < 0 :=
@algebra.mul_neg_of_neg_of_pos _ _
theorem lt_of_mul_lt_mul_left : ∀{a b c : }, c * a < c * b → c ≥ 0 → a < b :=
@algebra.lt_of_mul_lt_mul_left _ _
theorem lt_of_mul_lt_mul_right : ∀{a b c : }, a * c < b * c → c ≥ 0 → a < b :=
@algebra.lt_of_mul_lt_mul_right _ _
theorem le_of_mul_le_mul_left : ∀{a b c : }, c * a ≤ c * b → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_left _ _
theorem le_of_mul_le_mul_right : ∀{a b c : }, a * c ≤ b * c → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_right _ _
theorem pos_of_mul_pos_left : ∀{a b : }, 0 < a * b → 0 ≤ a → 0 < b :=
@algebra.pos_of_mul_pos_left _ _
theorem pos_of_mul_pos_right : ∀{a b : }, 0 < a * b → 0 ≤ b → 0 < a :=
@algebra.pos_of_mul_pos_right _ _
theorem mul_le_mul_of_nonpos_left : ∀{a b c : }, b ≤ a → c ≤ 0 → c * a ≤ c * b :=
@algebra.mul_le_mul_of_nonpos_left _ _
theorem mul_le_mul_of_nonpos_right : ∀{a b c : }, b ≤ a → c ≤ 0 → a * c ≤ b * c :=
@algebra.mul_le_mul_of_nonpos_right _ _
theorem mul_nonneg_of_nonpos_of_nonpos : ∀{a b : }, a ≤ 0 → b ≤ 0 → 0 ≤ a * b :=
@algebra.mul_nonneg_of_nonpos_of_nonpos _ _
theorem mul_lt_mul_of_neg_left : ∀{a b c : }, b < a → c < 0 → c * a < c * b :=
@algebra.mul_lt_mul_of_neg_left _ _
theorem mul_lt_mul_of_neg_right : ∀{a b c : }, b < a → c < 0 → a * c < b * c :=
@algebra.mul_lt_mul_of_neg_right _ _
theorem mul_pos_of_neg_of_neg : ∀{a b : }, a < 0 → b < 0 → 0 < a * b :=
@algebra.mul_pos_of_neg_of_neg _ _
theorem mul_self_nonneg : ∀a : , a * a ≥ 0 := algebra.mul_self_nonneg
theorem zero_le_one : #int 0 ≤ 1 := trivial
theorem zero_lt_one : #int 0 < 1 := trivial
theorem pos_and_pos_or_neg_and_neg_of_mul_pos : ∀{a b : }, a * b > 0 →
(a > 0 ∧ b > 0) (a < 0 ∧ b < 0) := @algebra.pos_and_pos_or_neg_and_neg_of_mul_pos _ _
definition sign : ∀a : , := algebra.sign
theorem sign_of_neg : ∀{a : }, a < 0 → sign a = -1 := @algebra.sign_of_neg _ _
theorem sign_zero : sign 0 = 0 := algebra.sign_zero
theorem sign_of_pos : ∀{a : }, a > 0 → sign a = 1 := @algebra.sign_of_pos _ _
theorem sign_one : sign 1 = 1 := algebra.sign_one
theorem sign_neg_one : sign (-1) = -1 := algebra.sign_neg_one
theorem sign_sign : ∀a : , sign (sign a) = sign a := algebra.sign_sign
theorem pos_of_sign_eq_one : ∀{a : }, sign a = 1 → a > 0 := @algebra.pos_of_sign_eq_one _ _
theorem eq_zero_of_sign_eq_zero : ∀{a : }, sign a = 0 → a = 0 :=
@algebra.eq_zero_of_sign_eq_zero _ _
theorem neg_of_sign_eq_neg_one : ∀{a : }, sign a = -1 → a < 0 :=
@algebra.neg_of_sign_eq_neg_one _ _
theorem sign_neg : ∀a : , sign (-a) = -(sign a) := algebra.sign_neg
theorem sign_mul : ∀a b : , sign (a * b) = sign a * sign b := algebra.sign_mul
theorem abs_eq_sign_mul : ∀a : , abs a = sign a * a := algebra.abs_eq_sign_mul
theorem eq_sign_mul_abs : ∀a : , a = sign a * abs a := algebra.eq_sign_mul_abs
theorem abs_dvd_iff_dvd : ∀a b : , abs a b ↔ a b := algebra.abs_dvd_iff_dvd
theorem dvd_abs_iff : ∀a b : , a abs b ↔ a b := algebra.dvd_abs_iff
theorem abs_mul : ∀a b : , abs (a * b) = abs a * abs b := algebra.abs_mul
theorem abs_mul_self : ∀a : , abs a * abs a = a * a := algebra.abs_mul_self
end port_algebra
/- more facts specific to int -/ /- more facts specific to int -/