lean2/library/data/int/order.lean
2015-05-12 04:24:13 -07:00

332 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.int.order
Authors: Floris van Doorn, Jeremy Avigad
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
and transfer the results.
-/
import .basic algebra.ordered_ring
open nat
open decidable
open fake_simplifier
open int eq.ops
namespace int
private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false)
definition le (a b : ) : Prop := nonneg (sub b a)
definition lt (a b : ) : Prop := le (add a 1) b
infix - := int.sub
infix <= := int.le
infix ≤ := int.le
infix < := int.lt
local attribute nonneg [reducible]
private definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := int.cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n :=
int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) :=
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
have H2 : nonneg n, from true.intro,
show nonneg (b - a), from H1⁻¹ ▸ H2
theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
obtain (n : ) (H1 : b - a = n), from nonneg.elim H,
exists.intro n (!add.comm ▸ iff.mp' !add_eq_iff_eq_add_neg (H1⁻¹))
theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.elim (nonneg_or_nonneg_neg (b - a))
(assume H, or.inl H)
(assume H : nonneg (-(b - a)),
have H0 : -(b - a) = a - b, from neg_sub b a,
have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step
or.inr H1)
theorem of_nat_le_of_nat {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
obtain (k : ) (Hk : m + k = n), from nat.le.elim H,
le.intro (Hk ▸ of_nat_add_of_nat m k)
theorem le_of_of_nat_le_of_nat {m n : } (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
obtain (k : ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
have H1 : m + k = n, from of_nat.inj ((of_nat_add_of_nat m k)⁻¹ ⬝ Hk),
nat.le.intro H1
theorem of_nat_le_of_nat_iff (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat
theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
le.intro (show a + 1 + n = a + succ n, from
calc
a + 1 + n = a + (1 + n) : add.assoc
... = a + (n + 1) : nat.add.comm
... = a + succ n : rfl)
theorem lt.intro {a b : } {n : } (H : a + succ n = b) : a < b :=
H ▸ lt_add_succ a n
theorem lt.elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, from
calc
a + succ n = a + 1 + n : by simp
... = b : Hn,
exists.intro n H2
theorem of_nat_lt_of_nat_iff (n m : ) : of_nat n < of_nat m ↔ n < m :=
calc
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
... ↔ of_nat (succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
... ↔ succ n ≤ m : of_nat_le_of_nat_iff
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n :=
iff.mp !of_nat_lt_of_nat_iff H
theorem of_nat_lt_of_nat {m n : } (H : #nat m < n) : of_nat m < of_nat n :=
iff.mp' !of_nat_lt_of_nat_iff H
/- show that the integers form an ordered additive group -/
theorem le.refl (a : ) : a ≤ a :=
le.intro (add_zero a)
theorem le.trans {a b c : } (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
obtain (n : ) (Hn : a + n = b), from le.elim H1,
obtain (m : ) (Hm : b + m = c), from le.elim H2,
have H3 : a + of_nat (n + m) = c, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹}
... = a + n + m : (add.assoc a n m)⁻¹
... = b + m : {Hn}
... = c : Hm,
le.intro H3
theorem le.antisymm : ∀ {a b : }, a ≤ b → b ≤ a → a = b :=
take a b : , assume (H₁ : a ≤ b) (H₂ : b ≤ a),
obtain (n : ) (Hn : a + n = b), from le.elim H₁,
obtain (m : ) (Hm : b + m = a), from le.elim H₂,
have H₃ : a + of_nat (n + m) = a + 0, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add_of_nat
... = a + n + m : add.assoc
... = b + m : Hn
... = a : Hm
... = a + 0 : add_zero,
have H₄ : of_nat (n + m) = of_nat 0, from add.left_cancel H₃,
have H₅ : n + m = 0, from of_nat.inj H₄,
have H₆ : n = 0, from nat.eq_zero_of_add_eq_zero_right H₅,
show a = b, from
calc
a = a + 0 : add_zero
... = a + n : H₆
... = b : Hn
theorem lt.irrefl (a : ) : ¬ a < a :=
(assume H : a < a,
obtain (n : ) (Hn : a + succ n = a), from lt.elim H,
have H2 : a + succ n = a + 0, from
calc
a + succ n = a : Hn
... = a + 0 : by simp,
have H3 : succ n = 0, from add.left_cancel H2,
have H4 : succ n = 0, from of_nat.inj H3,
absurd H4 !succ_ne_zero)
theorem ne_of_lt {a b : } (H : a < b) : a ≠ b :=
(assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b))
theorem succ_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b := H
theorem lt_of_le_succ {a b : } (H : a + 1 ≤ b) : a < b := H
theorem le_of_lt {a b : } (H : a < b) : a ≤ b :=
obtain (n : ) (Hn : a + succ n = b), from lt.elim H,
le.intro Hn
theorem lt_iff_le_and_ne (a b : ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
iff.intro
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
(assume H,
have H1 : a ≤ b, from and.elim_left H,
have H2 : a ≠ b, from and.elim_right H,
obtain (n : ) (Hn : a + n = b), from le.elim H1,
have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H3,
lt.intro (Hk ▸ Hn))
theorem le_iff_lt_or_eq (a b : ) : a ≤ b ↔ (a < b a = b) :=
iff.intro
(assume H,
by_cases
(assume H1 : a = b, or.inr H1)
(assume H1 : a ≠ b,
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H2,
or.inl (lt.intro (Hk ▸ Hn))))
(assume H,
or.elim H
(assume H1, le_of_lt H1)
(assume H1, H1 ▸ !le.refl))
theorem lt_succ (a : ) : a < a + 1 :=
le.refl (a + 1)
theorem add_le_add_left {a b : } (H : a ≤ b) (c : ) : c + a ≤ c + b :=
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : c + a + n = c + b, from
calc
c + a + n = c + (a + n) : add.assoc c a n
... = c + b : {Hn},
le.intro H2
theorem mul_nonneg {a b : } (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
obtain (n : ) (Hn : 0 + n = a), from le.elim Ha,
obtain (m : ) (Hm : 0 + m = b), from le.elim Hb,
le.intro
(eq.symm
(calc
a * b = (0 + n) * b : Hn
... = n * b : nat.zero_add
... = n * (0 + m) : {Hm⁻¹}
... = n * m : nat.zero_add
... = 0 + n * m : zero_add))
theorem mul_pos {a b : } (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
obtain (n : ) (Hn : 0 + succ n = a), from lt.elim Ha,
obtain (m : ) (Hm : 0 + succ m = b), from lt.elim Hb,
lt.intro
(eq.symm
(calc
a * b = (0 + succ n) * b : Hn
... = succ n * b : nat.zero_add
... = succ n * (0 + succ m) : {Hm⁻¹}
... = succ n * succ m : nat.zero_add
... = of_nat (succ n * succ m) : of_nat_mul_of_nat
... = of_nat (succ n * m + succ n) : nat.mul_succ
... = of_nat (succ (succ n * m + n)) : nat.add_succ
... = 0 + succ (succ n * m + n) : zero_add))
section
open [classes] algebra
protected definition linear_ordered_comm_ring [instance] [reducible] :
algebra.linear_ordered_comm_ring int :=
⦃algebra.linear_ordered_comm_ring, int.integral_domain,
le := le,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
lt := lt,
lt_iff_le_and_ne := lt_iff_le_and_ne,
add_le_add_left := @add_le_add_left,
mul_nonneg := @mul_nonneg,
mul_pos := @mul_pos,
le_iff_lt_or_eq := le_iff_lt_or_eq,
le_total := le.total,
zero_ne_one := zero_ne_one⦄
protected definition decidable_linear_ordered_comm_ring [instance] [reducible] :
algebra.decidable_linear_ordered_comm_ring int :=
⦃algebra.decidable_linear_ordered_comm_ring,
int.linear_ordered_comm_ring,
decidable_lt := decidable_lt⦄
definition ge [reducible] (a b : ) := algebra.has_le.ge a b
definition gt [reducible] (a b : ) := algebra.has_lt.gt a b
infix >= := int.ge
infix ≥ := int.ge
infix > := int.gt
definition decidable_ge [instance] (a b : ) : decidable (a ≥ b) :=
show decidable (b ≤ a), from _
definition decidable_gt [instance] (a b : ) : decidable (a > b) :=
show decidable (b < a), from _
definition sign : ∀a : , := algebra.sign
definition abs : := algebra.abs
migrate from algebra with int
replacing has_le.ge → ge, has_lt.gt → gt, sign → sign, abs → abs, dvd → dvd, sub → sub
end
/- more facts specific to int -/
theorem nonneg_of_nat (n : ) : 0 ≤ of_nat n := trivial
theorem exists_eq_of_nat {a : } (H : 0 ≤ a) : ∃n : , a = of_nat n :=
obtain (n : ) (H1 : 0 + of_nat n = a), from le.elim H,
exists.intro n (!zero_add ▸ (H1⁻¹))
theorem exists_eq_neg_of_nat {a : } (H : a ≤ 0) : ∃n : , a = -(of_nat n) :=
have H2 : -a ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H,
obtain (n : ) (Hn : -a = of_nat n), from exists_eq_of_nat H2,
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
theorem of_nat_nat_abs_of_nonneg {a : } (H : a ≥ 0) : of_nat (nat_abs a) = a :=
obtain (n : ) (Hn : a = of_nat n), from exists_eq_of_nat H,
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
theorem of_nat_nat_abs_of_nonpos {a : } (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
have H1 : (-a) ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H,
calc
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
... = -a : of_nat_nat_abs_of_nonneg H1
theorem of_nat_nat_abs (b : ) : nat_abs b = abs b :=
or.elim (le.total 0 b)
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
theorem lt_of_add_one_le {a b : } (H : a + 1 ≤ b) : a < b :=
obtain n (H1 : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
lt.intro H2
theorem add_one_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b :=
obtain n (H1 : a + succ n = b), from lt.elim H,
have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
le.intro H2
theorem lt_add_one_of_le {a b : } (H : a ≤ b) : a < b + 1 :=
lt_add_of_le_of_pos H trivial
theorem le_of_lt_add_one {a b : } (H : a < b + 1) : a ≤ b :=
have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H,
le_of_add_le_add_right H1
theorem sub_one_le_of_lt {a b : } (H : a ≤ b) : a - 1 < b :=
lt_of_add_one_le (!sub_add_cancel⁻¹ ▸ H)
theorem lt_of_sub_one_le {a b : } (H : a - 1 < b) : a ≤ b :=
!sub_add_cancel ▸ add_one_le_of_lt H
theorem le_sub_one_of_lt {a b : } (H : a < b) : a ≤ b - 1 :=
le_of_lt_add_one (!sub_add_cancel⁻¹ ▸ H)
theorem lt_of_le_sub_one {a b : } (H : a ≤ b - 1) : a < b :=
!sub_add_cancel ▸ (lt_add_one_of_le H)
theorem of_nat_nonneg (n : ) : of_nat n ≥ 0 := trivial
theorem of_nat_pos {n : } (Hpos : #nat n > 0) : of_nat n > 0 :=
of_nat_lt_of_nat Hpos
theorem sign_of_succ (n : nat) : sign (succ n) = 1 :=
sign_of_pos (of_nat_pos !nat.succ_pos)
theorem exists_eq_neg_succ_of_nat {a : } : a < 0 → ∃m : , a = -[m +1] :=
int.cases_on a
(take m H, absurd (of_nat_nonneg m) (not_le_of_lt H))
(take m H, exists.intro m rfl)
end int