feat(library/data/stream): simplify corecursion proofs, define interleave operation by corecursion, add one example of proof by bisimulation
This commit is contained in:
parent
8685e8ad7e
commit
d987d6cc84
1 changed files with 89 additions and 46 deletions
|
@ -18,6 +18,8 @@ definition cons (a : A) (s : stream A) : stream A :=
|
|||
| succ n := s n
|
||||
end
|
||||
|
||||
notation h :: t := cons h t
|
||||
|
||||
definition head (s : stream A) : A :=
|
||||
s 0
|
||||
|
||||
|
@ -30,13 +32,13 @@ definition nth_tail (n : nat) (s : stream A) : stream A :=
|
|||
definition nth (n : nat) (s : stream A) : A :=
|
||||
s n
|
||||
|
||||
protected theorem eta (s : stream A) : cons (head s) (tail s) = s :=
|
||||
protected theorem eta (s : stream A) : head s :: tail s = s :=
|
||||
funext (λ i, begin cases i, repeat reflexivity end)
|
||||
|
||||
theorem head_cons (a : A) (s : stream A) : head (cons a s) = a :=
|
||||
theorem head_cons (a : A) (s : stream A) : head (a :: s) = a :=
|
||||
rfl
|
||||
|
||||
theorem tail_cons (a : A) (s : stream A) : tail (cons a s) = s :=
|
||||
theorem tail_cons (a : A) (s : stream A) : tail (a :: s) = s :=
|
||||
rfl
|
||||
|
||||
theorem tail_nth_tail (n : nat) (s : stream A) : tail (nth_tail n s) = nth_tail n (tail s) :=
|
||||
|
@ -81,6 +83,15 @@ rfl
|
|||
|
||||
theorem tail_map (s : stream A) : tail (map f s) = map f (tail s) :=
|
||||
begin rewrite tail_eq_nth_tail end
|
||||
|
||||
theorem head_map (s : stream A) : head (map f s) = f (head s) :=
|
||||
rfl
|
||||
|
||||
theorem map_eq (s : stream A) : map f s = f (head s) :: map f (tail s) :=
|
||||
by rewrite [-stream.eta, tail_map, head_map]
|
||||
|
||||
theorem map_id (s : stream A) : map id s = s :=
|
||||
rfl
|
||||
end map
|
||||
|
||||
section zip
|
||||
|
@ -94,21 +105,36 @@ stream.ext (λ i, rfl)
|
|||
|
||||
theorem nth_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : nth n (zip f s₁ s₂) = f (nth n s₁) (nth n s₂) :=
|
||||
rfl
|
||||
|
||||
theorem head_zip (s₁ : stream A) (s₂ : stream B) : head (zip f s₁ s₂) = f (head s₁) (head s₂) :=
|
||||
rfl
|
||||
|
||||
theorem tail_zip (s₁ : stream A) (s₂ : stream B) : tail (zip f s₁ s₂) = zip f (tail s₁) (tail s₂) :=
|
||||
rfl
|
||||
|
||||
theorem zip_eq (s₁ : stream A) (s₂ : stream B) : zip f s₁ s₂ = f (head s₁) (head s₂) :: zip f (tail s₁) (tail s₂) :=
|
||||
by rewrite [-stream.eta]
|
||||
end zip
|
||||
|
||||
definition repeat (a : A) : stream A :=
|
||||
definition const (a : A) : stream A :=
|
||||
λ n, a
|
||||
|
||||
theorem repeat_eq (a : A) : repeat a = cons a (repeat a) :=
|
||||
theorem const_eq (a : A) : const a = a :: const a :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n, repeat reflexivity
|
||||
end
|
||||
|
||||
theorem nth_repeat (n : nat) (a : A) : nth n (repeat a) = a :=
|
||||
theorem tail_const (a : A) : tail (const a) = const a :=
|
||||
by rewrite [const_eq at {1}]
|
||||
|
||||
theorem map_const (f : A → B) (a : A) : map f (const a) = const (f a) :=
|
||||
rfl
|
||||
|
||||
theorem nth_tail_repeat (n : nat) (a : A) : nth_tail n (repeat a) = repeat a :=
|
||||
theorem nth_const (n : nat) (a : A) : nth n (const a) = a :=
|
||||
rfl
|
||||
|
||||
theorem nth_tail_const (n : nat) (a : A) : nth_tail n (const a) = const a :=
|
||||
stream.ext (λ i, rfl)
|
||||
|
||||
definition iterate (f : A → A) (a : A) : stream A :=
|
||||
|
@ -127,7 +153,7 @@ begin
|
|||
esimp at *, rewrite IH}
|
||||
end
|
||||
|
||||
theorem iterate_eq (f : A → A) (a : A) : iterate f a = cons a (iterate f (f a)) :=
|
||||
theorem iterate_eq (f : A → A) (a : A) : iterate f a = a :: iterate f (f a) :=
|
||||
begin
|
||||
rewrite [-stream.eta], congruence, exact !tail_iterate
|
||||
end
|
||||
|
@ -138,6 +164,43 @@ rfl
|
|||
theorem nth_succ_iterate (n : nat) (f : A → A) (a : A) : nth (succ n) (iterate f a) = nth n (iterate f (f a)) :=
|
||||
by rewrite [nth_succ, tail_iterate]
|
||||
|
||||
section bisim
|
||||
definition is_bisimulation (R : stream A → stream A → Prop) := ∀ ⦃s₁ s₂⦄, R s₁ s₂ → head s₁ = head s₂ ∧ R (tail s₁) (tail s₂)
|
||||
|
||||
variable {R : stream A → stream A → Prop}
|
||||
local infix ~ := R
|
||||
|
||||
lemma nth_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ nth_tail (n+1) s₁ ~ nth_tail (n+1) s₂
|
||||
| s₁ s₂ 0 h := bisim h
|
||||
| s₁ s₂ (n+1) h :=
|
||||
obtain h₁ (trel : tail s₁ ~ tail s₂), from bisim h,
|
||||
nth_of_bisim n trel
|
||||
|
||||
-- If two streams are bisimilar, then they are equal
|
||||
theorem eq_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ :=
|
||||
λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim bisim n r))
|
||||
end bisim
|
||||
|
||||
theorem bisim_simple (s₁ s₂ : stream A) : head s₁ = head s₂ → s₁ = tail s₁ → s₂ = tail s₂ → s₁ = s₂ :=
|
||||
let R := λ s₁ s₂, head s₁ = head s₂ ∧ s₁ = tail s₁ ∧ s₂ = tail s₂ in
|
||||
have bisim : is_bisimulation R, from
|
||||
λ s₁ s₂ (h : R s₁ s₂),
|
||||
obtain h₁ h₂ h₃, from h,
|
||||
begin
|
||||
constructor, exact h₁, rewrite [-h₂, -h₃], exact h
|
||||
end,
|
||||
assume hh ht₁ ht₂,
|
||||
have Rs₁s₂ : R s₁ s₂, from and.intro hh (and.intro ht₁ ht₂),
|
||||
eq_of_bisim bisim Rs₁s₂
|
||||
|
||||
theorem iterate_id (a : A) : iterate id a = const a :=
|
||||
begin
|
||||
apply bisim_simple,
|
||||
reflexivity,
|
||||
rewrite tail_iterate,
|
||||
rewrite tail_const
|
||||
end
|
||||
|
||||
theorem map_iterate (f : A → A) (a : A) : iterate f (f a) = map f (iterate f a) :=
|
||||
begin
|
||||
apply funext, intro n,
|
||||
|
@ -147,22 +210,6 @@ begin
|
|||
rewrite IH}
|
||||
end
|
||||
|
||||
section bisim
|
||||
variable {R : stream A → stream A → Prop}
|
||||
local infix ~ := R
|
||||
premise (bisim : ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂)
|
||||
|
||||
lemma nth_of_bisim : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ nth_tail (n+1) s₁ ~ nth_tail (n+1) s₂
|
||||
| s₁ s₂ 0 h := bisim h
|
||||
| s₁ s₂ (n+1) h :=
|
||||
obtain h₁ (trel : tail s₁ ~ tail s₂), from bisim h,
|
||||
nth_of_bisim n trel
|
||||
|
||||
-- If two streams are bisimilar, then they are equal
|
||||
theorem eq_of_bisim : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ :=
|
||||
λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim bisim n r))
|
||||
end bisim
|
||||
|
||||
section corec
|
||||
definition corec (f : A → B) (g : A → A) : A → stream B :=
|
||||
λ a, map f (iterate g a)
|
||||
|
@ -170,30 +217,26 @@ section corec
|
|||
theorem corec_def (f : A → B) (g : A → A) (a : A) : corec f g a = map f (iterate g a) :=
|
||||
rfl
|
||||
|
||||
theorem corec_eq (f : A → B) (g : A → A) (a : A) : corec f g a = cons (f a) (corec f g (g a)) :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n,
|
||||
{reflexivity},
|
||||
{esimp [corec] at *,
|
||||
rewrite [*nth_succ, tail_cons, tail_map, tail_iterate]}
|
||||
end
|
||||
theorem corec_eq (f : A → B) (g : A → A) (a : A) : corec f g a = f a :: corec f g (g a) :=
|
||||
by rewrite [corec_def, map_eq, head_iterate, tail_iterate]
|
||||
|
||||
theorem corec_id_id_eq_repeat (a : A) : corec id id a = repeat a :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
induction n with n' ih,
|
||||
{reflexivity},
|
||||
{rewrite [corec_eq, repeat_eq, *nth_succ, *tail_cons], esimp,
|
||||
exact ih}
|
||||
end
|
||||
theorem corec_id_id_eq_const (a : A) : corec id id a = const a :=
|
||||
by rewrite [corec_def, map_id, iterate_id]
|
||||
|
||||
theorem corec_id_f_eq_iterate (f : A → A) (a : A) : corec id f a = iterate f a :=
|
||||
begin
|
||||
apply stream.ext, intro n,
|
||||
cases n,
|
||||
{reflexivity},
|
||||
{rewrite [corec_eq, *nth_succ, tail_iterate]}
|
||||
end
|
||||
rfl
|
||||
end corec
|
||||
|
||||
definition interleave (s₁ s₂ : stream A) : stream A :=
|
||||
corec
|
||||
(λ p, obtain s₁ s₂, from p, head s₁)
|
||||
(λ p, obtain s₁ s₂, from p, (s₂, tail s₁))
|
||||
(s₁, s₂)
|
||||
|
||||
infix `⋈`:65 := interleave
|
||||
|
||||
theorem interleave_eq (s₁ s₂ : stream A) : s₁ ⋈ s₂ = head s₁ :: head s₂ :: (tail s₁ ⋈ tail s₂) :=
|
||||
begin
|
||||
esimp [interleave], rewrite corec_eq, esimp, congruence, rewrite corec_eq
|
||||
end
|
||||
end stream
|
||||
|
|
Loading…
Reference in a new issue