feat(library/hott): copy basic files to hott library
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
5bf3197306
commit
d9ee994281
6 changed files with 91 additions and 8 deletions
6
library/hott/bool.lean
Normal file
6
library/hott/bool.lean
Normal file
|
@ -0,0 +1,6 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
inductive bool : Type :=
|
||||
| true : bool
|
||||
| false : bool
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic
|
||||
import logic bool
|
||||
using logic
|
||||
|
||||
inductive inhabited (A : Type) : Type :=
|
||||
|
|
|
@ -231,13 +231,6 @@ theorem resolve_left {a : Type} {b : Type} (H1 : a + b) (H2 : ¬ b) : a
|
|||
theorem sum_flip {a : Type} {b : Type} (H : a + b) : b + a
|
||||
:= sum_elim H (assume Ha, inr b Ha) (assume Hb, inl a Hb)
|
||||
|
||||
inductive bool : Type :=
|
||||
| true : bool
|
||||
| false : bool
|
||||
|
||||
theorem bool_cases (p : bool) : p = true ∨ p = false
|
||||
:= bool_rec (inl _ (refl true)) (inr _ (refl false)) p
|
||||
|
||||
inductive Sigma {A : Type} (B : A → Type) : Type :=
|
||||
| sigma_intro : Π a, B a → Sigma B
|
||||
|
||||
|
|
17
library/hott/num.lean
Normal file
17
library/hott/num.lean
Normal file
|
@ -0,0 +1,17 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic
|
||||
namespace num
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
||||
inductive pos_num : Type :=
|
||||
| one : pos_num
|
||||
| bit1 : pos_num → pos_num
|
||||
| bit0 : pos_num → pos_num
|
||||
|
||||
inductive num : Type :=
|
||||
| zero : num
|
||||
| pos : pos_num → num
|
||||
end
|
13
library/hott/string.lean
Normal file
13
library/hott/string.lean
Normal file
|
@ -0,0 +1,13 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import bool
|
||||
|
||||
namespace string
|
||||
inductive char : Type :=
|
||||
| ascii : bool → bool → bool → bool → bool → bool → bool → bool → char
|
||||
|
||||
inductive string : Type :=
|
||||
| empty : string
|
||||
| str : char → string → string
|
||||
end
|
54
library/hott/tactic.lean
Normal file
54
library/hott/tactic.lean
Normal file
|
@ -0,0 +1,54 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic string num
|
||||
using string
|
||||
using num
|
||||
|
||||
namespace tactic
|
||||
-- This is just a trick to embed the 'tactic language' as a
|
||||
-- Lean expression. We should view 'tactic' as automation
|
||||
-- that when execute produces a term.
|
||||
-- builtin_tactic is just a "dummy" for creating the
|
||||
-- definitions that are actually implemented in C++
|
||||
inductive tactic : Type :=
|
||||
| builtin_tactic : tactic
|
||||
-- Remark the following names are not arbitrary, the tactic module
|
||||
-- uses them when converting Lean expressions into actual tactic objects.
|
||||
-- The bultin 'by' construct triggers the process of converting a
|
||||
-- a term of type 'tactic' into a tactic that sythesizes a term
|
||||
definition and_then (t1 t2 : tactic) : tactic := builtin_tactic
|
||||
definition or_else (t1 t2 : tactic) : tactic := builtin_tactic
|
||||
definition append (t1 t2 : tactic) : tactic := builtin_tactic
|
||||
definition interleave (t1 t2 : tactic) : tactic := builtin_tactic
|
||||
definition par (t1 t2 : tactic) : tactic := builtin_tactic
|
||||
definition fixpoint (f : tactic → tactic) : tactic := builtin_tactic
|
||||
definition repeat (t : tactic) : tactic := builtin_tactic
|
||||
definition at_most (t : tactic) (k : num) : tactic := builtin_tactic
|
||||
definition discard (t : tactic) (k : num) : tactic := builtin_tactic
|
||||
definition focus_at (t : tactic) (i : num) : tactic := builtin_tactic
|
||||
definition try_for (t : tactic) (ms : num) : tactic := builtin_tactic
|
||||
definition now : tactic := builtin_tactic
|
||||
definition assumption : tactic := builtin_tactic
|
||||
definition eassumption : tactic := builtin_tactic
|
||||
definition state : tactic := builtin_tactic
|
||||
definition fail : tactic := builtin_tactic
|
||||
definition id : tactic := builtin_tactic
|
||||
definition beta : tactic := builtin_tactic
|
||||
definition apply {B : Type} (b : B) : tactic := builtin_tactic
|
||||
definition unfold {B : Type} (b : B) : tactic := builtin_tactic
|
||||
definition exact {B : Type} (b : B) : tactic := builtin_tactic
|
||||
definition trace (s : string) : tactic := builtin_tactic
|
||||
precedence `;`:200
|
||||
infixl ; := and_then
|
||||
notation `!` t:max := repeat t
|
||||
-- [ t_1 | ... | t_n ] notation
|
||||
notation `[` h:100 `|` r:(foldl 100 `|` (e r, or_else r e) h) `]` := r
|
||||
-- [ t_1 || ... || t_n ] notation
|
||||
notation `[` h:100 `||` r:(foldl 100 `||` (e r, par r e) h) `]` := r
|
||||
definition try (t : tactic) : tactic := [ t | id ]
|
||||
notation `?` t:max := try t
|
||||
definition repeat1 (t : tactic) : tactic := t ; !t
|
||||
definition focus (t : tactic) : tactic := focus_at t 0
|
||||
definition determ (t : tactic) : tactic := at_most t 1
|
||||
end
|
Loading…
Reference in a new issue