d9ee994281
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
243 lines
7.1 KiB
Text
243 lines
7.1 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura
|
||
|
||
abbreviation id {A : Type} (a : A) := a
|
||
abbreviation compose {A : Type} {B : Type} {C : Type} (g : B → C) (f : A → B) := λ x, g (f x)
|
||
infixl `∘`:60 := compose
|
||
|
||
inductive path {A : Type} (a : A) : A → Type :=
|
||
| refl : path a a
|
||
|
||
infix `=`:50 := path
|
||
|
||
definition transport {A : Type} {a b : A} {P : A → Type} (H1 : a = b) (H2 : P a) : P b
|
||
:= path_rec H2 H1
|
||
|
||
namespace logic
|
||
notation p `*(`:75 u `)` := transport p u
|
||
end
|
||
using logic
|
||
|
||
definition symm {A : Type} {a b : A} (p : a = b) : b = a
|
||
:= p*(refl a)
|
||
|
||
definition trans {A : Type} {a b c : A} (p1 : a = b) (p2 : b = c) : a = c
|
||
:= p2*(p1)
|
||
|
||
calc_subst transport
|
||
calc_refl refl
|
||
calc_trans trans
|
||
|
||
namespace logic
|
||
postfix `⁻¹`:100 := symm
|
||
infixr `⬝`:75 := trans
|
||
end
|
||
using logic
|
||
|
||
theorem trans_refl_right {A : Type} {x y : A} (p : x = y) : p = p ⬝ (refl y)
|
||
:= refl p
|
||
|
||
theorem trans_refl_left {A : Type} {x y : A} (p : x = y) : p = (refl x) ⬝ p
|
||
:= path_rec (trans_refl_right (refl x)) p
|
||
|
||
theorem refl_symm {A : Type} (x : A) : (refl x)⁻¹ = (refl x)
|
||
:= refl (refl x)
|
||
|
||
theorem refl_trans {A : Type} (x : A) : (refl x) ⬝ (refl x) = (refl x)
|
||
:= refl (refl x)
|
||
|
||
theorem trans_symm {A : Type} {x y : A} (p : x = y) : p ⬝ p⁻¹ = refl x
|
||
:= have q : (refl x) ⬝ (refl x)⁻¹ = refl x, from
|
||
((refl_symm x)⁻¹)*(refl_trans x),
|
||
path_rec q p
|
||
|
||
theorem symm_trans {A : Type} {x y : A} (p : x = y) : p⁻¹ ⬝ p = refl y
|
||
:= have q : (refl x)⁻¹ ⬝ (refl x) = refl x, from
|
||
((refl_symm x)⁻¹)*(refl_trans x),
|
||
path_rec q p
|
||
|
||
theorem symm_symm {A : Type} {x y : A} (p : x = y) : (p⁻¹)⁻¹ = p
|
||
:= have q : ((refl x)⁻¹)⁻¹ = refl x, from
|
||
refl (refl x),
|
||
path_rec q p
|
||
|
||
theorem trans_assoc {A : Type} {x y z w : A} (p : x = y) (q : y = z) (r : z = w) : p ⬝ (q ⬝ r) = (p ⬝ q) ⬝ r
|
||
:= have e1 : (p ⬝ q) ⬝ (refl z) = p ⬝ q, from
|
||
(trans_refl_right (p ⬝ q))⁻¹,
|
||
have e2 : q ⬝ (refl z) = q, from
|
||
(trans_refl_right q)⁻¹,
|
||
have e3 : p ⬝ (q ⬝ (refl z)) = p ⬝ q, from
|
||
e2*(refl (p ⬝ (q ⬝ (refl z)))),
|
||
path_rec (e3 ⬝ e1⁻¹) r
|
||
|
||
definition ap {A : Type} {B : Type} (f : A → B) {a b : A} (p : a = b) : f a = f b
|
||
:= p*(refl (f a))
|
||
|
||
theorem ap_refl {A : Type} {B : Type} (f : A → B) (a : A) : ap f (refl a) = refl (f a)
|
||
:= refl (refl (f a))
|
||
|
||
section
|
||
parameters {A : Type} {B : Type} {C : Type}
|
||
parameters (f : A → B) (g : B → C)
|
||
parameters (x y z : A) (p : x = y) (q : y = z)
|
||
|
||
theorem ap_trans_dist : ap f (p ⬝ q) = (ap f p) ⬝ (ap f q)
|
||
:= have e1 : ap f (p ⬝ refl y) = (ap f p) ⬝ (ap f (refl y)), from refl _,
|
||
path_rec e1 q
|
||
|
||
theorem ap_inv_dist : ap f (p⁻¹) = (ap f p)⁻¹
|
||
:= have e1 : ap f ((refl x)⁻¹) = (ap f (refl x))⁻¹, from refl _,
|
||
path_rec e1 p
|
||
|
||
theorem ap_compose : ap g (ap f p) = ap (g∘f) p
|
||
:= have e1 : ap g (ap f (refl x)) = ap (g∘f) (refl x), from refl _,
|
||
path_rec e1 p
|
||
|
||
theorem ap_id : ap id p = p
|
||
:= have e1 : ap id (refl x) = (refl x), from refl (refl x),
|
||
path_rec e1 p
|
||
end
|
||
|
||
section
|
||
parameters {A : Type} {B : A → Type} (f : Π x, B x)
|
||
definition D [private] (x y : A) (p : x = y) := p*(f x) = f y
|
||
definition d [private] (x : A) : D x x (refl x)
|
||
:= refl (f x)
|
||
|
||
theorem apd {a b : A} (p : a = b) : p*(f a) = f b
|
||
:= path_rec (d a) p
|
||
end
|
||
|
||
|
||
abbreviation homotopy {A : Type} {P : A → Type} (f g : Π x, P x)
|
||
:= Π x, f x = g x
|
||
|
||
namespace logic
|
||
infix `∼`:50 := homotopy
|
||
end
|
||
using logic
|
||
|
||
notation `assume` binders `,` r:(scoped f, f) := r
|
||
notation `take` binders `,` r:(scoped f, f) := r
|
||
|
||
section
|
||
parameters {A : Type} {B : Type}
|
||
|
||
theorem hom_refl (f : A → B) : f ∼ f
|
||
:= take x, refl (f x)
|
||
|
||
theorem hom_symm {f g : A → B} : f ∼ g → g ∼ f
|
||
:= assume h, take x, (h x)⁻¹
|
||
|
||
theorem hom_trans {f g h : A → B} : f ∼ g → g ∼ h → f ∼ h
|
||
:= assume h1 h2, take x, (h1 x) ⬝ (h2 x)
|
||
|
||
theorem hom_fun {f g : A → B} {x y : A} (H : f ∼ g) (p : x = y) : (H x) ⬝ (ap g p) = (ap f p) ⬝ (H y)
|
||
:= have e1 : (H x) ⬝ (refl (g x)) = (refl (f x)) ⬝ (H x), from
|
||
calc (H x) ⬝ (refl (g x)) = H x : (trans_refl_right (H x))⁻¹
|
||
... = (refl (f x)) ⬝ (H x) : trans_refl_left (H x),
|
||
have e2 : (H x) ⬝ (ap g (refl x)) = (ap f (refl x)) ⬝ (H x), from
|
||
calc (H x) ⬝ (ap g (refl x)) = (H x) ⬝ (refl (g x)) : {ap_refl g x}
|
||
... = (refl (f x)) ⬝ (H x) : e1
|
||
... = (ap f (refl x)) ⬝ (H x) : {symm (ap_refl f x)},
|
||
path_rec e2 p
|
||
|
||
|
||
end
|
||
|
||
definition loop_space (A : Type) (a : A) := a = a
|
||
notation `Ω` `(` A `,` a `)` := loop_space A a
|
||
|
||
definition loop2d_space (A : Type) (a : A) := (refl a) = (refl a)
|
||
notation `Ω²` `(` A `,` a `)` := loop2d_space A a
|
||
|
||
inductive empty : Type
|
||
|
||
theorem empty_elim (c : Type) (H : empty) : c
|
||
:= empty_rec (λ e, c) H
|
||
|
||
definition not (A : Type) := A → empty
|
||
prefix `¬`:40 := not
|
||
|
||
theorem not_intro {a : Type} (H : a → empty) : ¬ a
|
||
:= H
|
||
|
||
theorem not_elim {a : Type} (H1 : ¬ a) (H2 : a) : empty
|
||
:= H1 H2
|
||
|
||
theorem absurd {a : Type} (H1 : a) (H2 : ¬ a) : empty
|
||
:= H2 H1
|
||
|
||
theorem mt {a b : Type} (H1 : a → b) (H2 : ¬ b) : ¬ a
|
||
:= assume Ha : a, absurd (H1 Ha) H2
|
||
|
||
theorem contrapos {a b : Type} (H : a → b) : ¬ b → ¬ a
|
||
:= assume Hnb : ¬ b, mt H Hnb
|
||
|
||
theorem absurd_elim {a : Type} (b : Type) (H1 : a) (H2 : ¬ a) : b
|
||
:= empty_elim b (absurd H1 H2)
|
||
|
||
inductive unit : Type :=
|
||
| star : unit
|
||
|
||
notation `⋆`:max := star
|
||
|
||
theorem absurd_not_unit (H : ¬ unit) : empty
|
||
:= absurd star H
|
||
|
||
theorem not_empty_trivial : ¬ empty
|
||
:= assume H : empty, H
|
||
|
||
theorem upun (x : unit) : x = ⋆
|
||
:= unit_rec (refl ⋆) x
|
||
|
||
inductive product (A : Type) (B : Type) : Type :=
|
||
| pair : A → B → product A B
|
||
|
||
infixr `×`:30 := product
|
||
infixr `∧`:30 := product
|
||
|
||
notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t
|
||
|
||
definition pr1 {A : Type} {B : Type} (p : A × B) : A
|
||
:= product_rec (λ a b, a) p
|
||
|
||
definition pr2 {A : Type} {B : Type} (p : A × B) : B
|
||
:= product_rec (λ a b, b) p
|
||
|
||
theorem uppt {A : Type} {B : Type} (p : A × B) : (pr1 p, pr2 p) = p
|
||
:= product_rec (λ x y, refl (x, y)) p
|
||
|
||
inductive sum (A : Type) (B : Type) : Type :=
|
||
| inl : A → sum A B
|
||
| inr : B → sum A B
|
||
|
||
namespace logic
|
||
infixr `+`:25 := sum
|
||
end
|
||
using logic
|
||
infixr `∨`:25 := sum
|
||
|
||
theorem sum_elim {a : Type} {b : Type} {c : Type} (H1 : a + b) (H2 : a → c) (H3 : b → c) : c
|
||
:= sum_rec H2 H3 H1
|
||
|
||
theorem resolve_right {a : Type} {b : Type} (H1 : a + b) (H2 : ¬ a) : b
|
||
:= sum_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
|
||
|
||
theorem resolve_left {a : Type} {b : Type} (H1 : a + b) (H2 : ¬ b) : a
|
||
:= sum_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
|
||
|
||
theorem sum_flip {a : Type} {b : Type} (H : a + b) : b + a
|
||
:= sum_elim H (assume Ha, inr b Ha) (assume Hb, inl a Hb)
|
||
|
||
inductive Sigma {A : Type} (B : A → Type) : Type :=
|
||
| sigma_intro : Π a, B a → Sigma B
|
||
|
||
notation `Σ` binders `,` r:(scoped P, Sigma P) := r
|
||
|
||
definition dpr1 {A : Type} {B : A → Type} (p : Σ x, B x) : A
|
||
:= Sigma_rec (λ a b, a) p
|
||
|
||
definition dpr2 {A : Type} {B : A → Type} (p : Σ x, B x) : B (dpr1 p)
|
||
:= Sigma_rec (λ a b, b) p
|